Stellar flares detected with the Next Generation Transit Survey

We present the results of a search for stellar flares in the first data release from the Next Generation Transit Survey (NGTS). We have found 610 flares from 339 stars, with spectral types between F8 and M6, the majority of which belong to the Galactic thin disc. We have used the 13-s cadence NGTS light curves to measure flare properties such as the flare amplitude, duration, and bolometric energy. We have measured the average flare occurrence rates of K and early to mid-M stars and present a generalized method to measure these rates while accounting for changing detection sensitivities. We find that field age K and early M stars show similar flare behaviour, while fully convective M stars exhibit increased white-light flaring activity, which we attribute to their increased spin-down time. We have also studied the average flare rates of pre-main-sequence K and M stars, showing they exhibit increased flare activity relative to their main-sequence counterparts.

[1]  D. Charbonneau,et al.  Flare Rates, Rotation Periods, and Spectroscopic Activity Indicators of a Volume-complete Sample of Mid- to Late-M Dwarfs within 15 pc , 2020, The Astrophysical Journal.

[2]  J. Haislip,et al.  EvryFlare. III. Temperature Evolution and Habitability Impacts of Dozens of Superflares Observed Simultaneously by Evryscope and TESS , 2020, The Astrophysical Journal.

[3]  N. Evans,et al.  Phase-modulated X-Ray Emission from Cepheids due to Pulsation-driven Shocks , 2020, The Astrophysical Journal.

[4]  S. Hodgkin,et al.  NGTS clusters survey – II. White-light flares from the youngest stars in Orion , 2020, Monthly Notices of the Royal Astronomical Society.

[5]  A. D. Feinstein,et al.  Flare Statistics for Young Stars from a Convolutional Neural Network Analysis of TESS Data , 2020, The Astronomical Journal.

[6]  S. Schmidt,et al.  A Catalog of M-dwarf Flares with ASAS-SN , 2019, The Astrophysical Journal.

[7]  K. Wu,et al.  Probing the origin of stellar flares on M dwarfs using TESS data sectors 1–3 , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  Xianming L. Han,et al.  Magnetic Activities of M-type Stars Based on LAMOST DR5 and Kepler and K2 Missions , 2019, The Astrophysical Journal Supplement Series.

[9]  J. Haislip,et al.  EvryFlare. II. Rotation Periods of the Cool Flare Stars in TESS across Half the Southern Sky , 2019, The Astrophysical Journal.

[10]  B. Gibson,et al.  Single-lined Spectroscopic Binary Star Candidates from a Combination of the RAVE and Gaia DR2 Surveys , 2019, The Astronomical Journal.

[11]  Keivan G. Stassun,et al.  The Revised TESS Input Catalog and Candidate Target List , 2019, The Astronomical Journal.

[12]  J. Haislip,et al.  EvryFlare. I. Long-term Evryscope Monitoring of Flares from the Cool Stars across Half the Southern Sky , 2019, The Astrophysical Journal.

[13]  J. Davenport,et al.  Do Kepler Superflare Stars Really Include Slowly Rotating Sun-like Stars?—Results Using APO 3.5 m Telescope Spectroscopic Observations and Gaia-DR2 Data , 2019, The Astrophysical Journal.

[14]  Jifeng Liu,et al.  The Flare Catalog and the Flare Activity in the Kepler Mission , 2019, The Astrophysical Journal Supplement Series.

[15]  D. Jack A catalog of spectroscopic binary candidate stars derived from a comparison of Gaia DR2 with other radial velocity catalogs , 2019, Astronomische Nachrichten.

[16]  Kenneth J. Slatten,et al.  The Solar Neighborhood. XLV. The Stellar Multiplicity Rate of M Dwarfs Within 25 pc , 2019, The Astronomical Journal.

[17]  K. Covey,et al.  The Evolution of Flare Activity with Stellar Age , 2019, The Astrophysical Journal.

[18]  Keivan G. Stassun,et al.  Stellar Flares from the First TESS Data Release: Exploring a New Sample of M Dwarfs , 2019, The Astronomical Journal.

[19]  J. Davenport,et al.  Flares in open clusters with K2 , 2018, Astronomy & Astrophysics.

[20]  S. Hawley,et al.  The Near-ultraviolet Continuum Radiation in the Impulsive Phase of HF/GF-type dMe Flares. I. Data , 2018, The Astrophysical Journal.

[21]  D. Mullan,et al.  Magnetic Fields on the Flare Star Trappist-1: Consequences for Radius Inflation and Planetary Habitability , 2018, The Astrophysical Journal.

[22]  K. Vida,et al.  The Connection between Starspots and Flares on Main-sequence Kepler Stars , 2018, The Astrophysical Journal.

[23]  J. Prieto,et al.  The Largest M Dwarf Flares from ASAS-SN , 2018, The Astrophysical Journal.

[24]  D. Queloz,et al.  The origin of RNA precursors on exoplanets. , 2018, Science advances.

[25]  K. Wu,et al.  Investigating the rotational phase of stellar flares on M dwarfs using K2 short cadence data , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  H. Bais,et al.  Photosynthesis on a Planet Orbiting an M Dwarf: Enhanced Effectiveness during Flares , 2018, The Astrophysical Journal.

[27]  Ming Yang,et al.  Wide-field Infrared Survey Explorer (WISE) Catalog of Periodic Variable Stars , 2018, The Astrophysical Journal Supplement Series.

[28]  E. Feigelson,et al.  The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure , 2018, The Astronomical Journal.

[29]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[30]  P. J. Richards,et al.  Gaia Data Release 2: Variable stars in the colour-absolute magnitude diagram , 2018, 1804.09382.

[31]  P. J. Richards,et al.  Gaia Data Release 2: Mapping the Milky Way disc kinematics , 2018 .

[32]  David J Armstrong,et al.  Ground-based detection of G star superflares with NGTS , 2018, 1804.03377.

[33]  Jifeng Liu,et al.  Do Long-cadence Data of the Kepler Spacecraft Capture Basic Properties of Flares? , 2018, 1804.02621.

[34]  S. Schmidt,et al.  K2 Ultracool Dwarfs Survey. III. White Light Flares Are Ubiquitous in M6-L0 Dwarfs , 2018, 1803.07708.

[35]  J. Prieto,et al.  The ASAS-SN catalogue of variable stars I: The Serendipitous Survey , 2018, 1803.01001.

[36]  Evgenya L. Shkolnik,et al.  HAZMAT. III. The UV Evolution of Mid- to Late-M Stars with GALEX , 2018, 1801.06711.

[37]  X. L. Yan,et al.  Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673 , 2018, 1801.02290.

[38]  Xavier Bonfils,et al.  A temperate exo-Earth around a quiet M dwarf at 3.4 parsec , 2017, 1711.06177.

[39]  Mark S. Giampapa,et al.  The Transit Light Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting Planets , 2017, 1711.05691.

[40]  Joseph E. Rodriguez,et al.  Variability Properties of Four Million Sources in the TESS Input Catalog Observed with the Kilodegree Extremely Little Telescope Survey , 2017, 1711.03608.

[41]  X. Fang,et al.  The Flaring Activity of M Dwarfs in the Kepler Field , 2017 .

[42]  David J Armstrong,et al.  Centroid vetting of transiting planet candidates from the Next Generation Transit Survey , 2017, 1707.07978.

[43]  A. Engeln,et al.  Strong dipole magnetic fields in fast rotating fully convective stars , 2017, Nature Astronomy.

[44]  C. Watson,et al.  An improved age–activity relationship for cool stars older than a gigayear , 2017, 1706.08979.

[45]  Dimitar D. Sasselov,et al.  The Surface UV Environment on Planets Orbiting M Dwarfs: Implications for Prebiotic Chemistry and the Need for Experimental Follow-up , 2017, 1705.02350.

[46]  Joseph E. Rodriguez,et al.  A temperate rocky super-Earth transiting a nearby cool star , 2017, Nature.

[47]  E. Guinan,et al.  The Secret Lives of Cepheids: δ Cep—The Prototype of a New Class of Pulsating X-Ray Variable Stars , 2017, 1702.06560.

[48]  S. Schmidt,et al.  K2 Ultracool Dwarfs Survey. I. Photometry of an L Dwarf Superflare , 2016, 1611.07080.

[49]  P. Berlind,et al.  THE Hα EMISSION OF NEARBY M DWARFS AND ITS RELATION TO STELLAR ROTATION , 2016, 1611.03509.

[50]  H. Maehara,et al.  Starspot Activity and Superflares on Solar-type Stars , 2016, Proceedings of the International Astronomical Union.

[51]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[52]  J. Davenport THE KEPLER CATALOG OF STELLAR FLARES , 2016, 1607.03494.

[53]  J. Prieto,et al.  ASASSN-16ae: A POWERFUL WHITE-LIGHT FLARE ON AN EARLY-L DWARF , 2016, 1605.04313.

[54]  M. Opher,et al.  PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS , 2016, 1605.02683.

[55]  David J Armstrong,et al.  Statistical properties of quasi-periodic pulsations in white-light flares observed with Kepler , 2016, 1604.03018.

[56]  K. Covey,et al.  K2 ROTATION PERIODS FOR LOW-MASS HYADS AND THE IMPLICATIONS FOR GYROCHRONOLOGY , 2016, 1603.00419.

[57]  H. Maehara,et al.  Statistical properties of superflares on solar-type stars based on the Kepler 1-min cadence data , 2015, Proceedings of the International Astronomical Union.

[58]  C. Pugh,et al.  Oscillations in stellar superflares , 2015, 1504.01491.

[59]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[60]  France,et al.  THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS , 2014, 1412.4786.

[61]  Leslie Hebb,et al.  KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243 , 2014, 1411.3723.

[62]  Russell Deitrick,et al.  KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS , 2014, 1410.7779.

[63]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[64]  D. O. Astronomy,et al.  Exploring the Milky Way stellar disk - A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood , 2013, 1309.2631.

[65]  H. Maehara,et al.  SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. STATISTICAL PROPERTIES OF SUPERFLARES , 2013, 1308.1480.

[66]  A. Kowalski,et al.  THE DECAYING LONG-PERIOD OSCILLATION OF A STELLAR MEGAFLARE , 2013 .

[67]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[68]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[69]  J. Davenport,et al.  TIME-RESOLVED PROPERTIES AND GLOBAL TRENDS IN dMe FLARES FROM SIMULTANEOUS PHOTOMETRY AND SPECTRA , 2013, 1307.2099.

[70]  H. Maehara,et al.  SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER II. PHOTOMETRIC VARIABILITY OF SUPERFLARE-GENERATING STARS: A SIGNATURE OF STELLAR ROTATION AND STARSPOTS , 2013, 1304.7361.

[71]  Nigel Bannister,et al.  Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.

[72]  D. Monet,et al.  THE FOURTH US NAVAL OBSERVATORY CCD ASTROGRAPH CATALOG (UCAC4) , 2012, 1212.6182.

[73]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[74]  Takashi Nagao,et al.  Superflares on solar-type stars , 2012, Nature.

[75]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[76]  Nicholas J. Wright,et al.  THE STELLAR-ACTIVITY–ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS , 2011, 1109.4634.

[77]  A. Benz,et al.  Physical Processes in Magnetically Driven Flares on the Sun, Stars, and Young Stellar Objects , 2010 .

[78]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[79]  S. Hawley,et al.  The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. , 2010, Astrobiology.

[80]  X. Delfosse,et al.  Large-scale magnetic topologies of late M dwarfs★: Magnetic topologies of late M dwarfs , 2010, 1005.5552.

[81]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[82]  D. A. Caldwell,et al.  INITIAL CHARACTERISTICS OF KEPLER SHORT CADENCE DATA , 2009, 1001.0142.

[83]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[84]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[85]  Yunchun Jiang,et al.  Magnetic interactions during sympathetic solar eruptions , 2009 .

[86]  X. Delfosse,et al.  Large-scale magnetic topologies of late M dwarfs⋆ , 2008, 0808.1423.

[87]  J. Bochanski,et al.  CONSTRAINING THE AGE–ACTIVITY RELATION FOR COOL STARS: THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 LOW-MASS STAR SPECTROSCOPIC SAMPLE , 2007, 0712.1590.

[88]  Astronomy,et al.  Spots, plages, and flares on λ Andromedae and II Pegasi ⋆ , 2007, 0711.3322.

[89]  H. Lichtenegger,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[90]  S. Schmidt,et al.  Activity and Kinematics of Ultracool Dwarfs, Including an Amazing Flare Observation , 2007, astro-ph/0701055.

[91]  A. Collier Cameron,et al.  A fast hybrid algorithm for exoplanetary transit searches , 2006, astro-ph/0609418.

[92]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[93]  Svetlana V. Berdyugina,et al.  Starspots: A Key to the Stellar Dynamo , 2005 .

[94]  I. Reid,et al.  Probing the LHS Catalog. II. Faint Proper‐Motion Stars , 2005 .

[95]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[96]  S. Feltzing,et al.  A possible age-metallicity relation in the Galactic thick disk? , 2004, astro-ph/0403591.

[97]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[98]  Bruce T. Tsurutani,et al.  The extreme magnetic storm of 1–2 September 1859 , 2003 .

[99]  Haimin Wang,et al.  Inter-Active Region Connection of Sympathetic Flaring on 2000 February 17 , 2001 .

[100]  Harry P. Warren,et al.  Time Variability of the “Quiet” Sun Observed with TRACE. II. Physical Parameters, Temperature Evolution, and Energetics of Extreme-Ultraviolet Nanoflares , 2000 .

[101]  B. Schaefer,et al.  Superflares on Ordinary Solar-Type Stars , 1999, astro-ph/9909188.

[102]  Brian R. Dennis,et al.  Frequency distributions and correlations of solar X-ray flare parameters , 1993 .

[103]  S. Hawley,et al.  X-ray-heated models of stellar flare atmospheres - Theory and comparison with observations , 1992 .

[104]  N. Shakhovskaya Stellar flare statistics — Physical consequences , 1989 .

[105]  Bradley E. Schaefer,et al.  Flashes from normal stars , 1989 .

[106]  J. Linsky,et al.  The Magnetic Field of the BY Draconis Flare Star EQ Virginis , 1986 .

[107]  B. Pettersen,et al.  The flare activity of AD Leonis , 1984 .

[108]  R. Gershberg,et al.  Characteristics of activity energetics of the UV cet-type flare stars , 1983 .

[109]  T. Moffett UV Ceti flare stars: observational data. , 1974 .

[110]  R. C. Carrington Description of a Singular Appearance seen in the Sun on September 1, 1859 , 1859 .

[111]  Yunchun Jiang,et al.  RAPID SUNSPOT ROTATION ASSOCIATED WITH THE X2.2 FLARE ON 2011 FEBRUARY 15 , 2011 .

[112]  M. Karlický,et al.  The X17.2 flare occurred in NOAA 10486: an example of filament destabilization caused by a domino effect , 2009 .

[113]  N. Pizzolato,et al.  The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs ? , 2003 .

[114]  V. Kashyap,et al.  Are Coronae of Magnetically Active Stars Heated by Flares? II. Extreme Ultraviolet and X-Ray Flare Statistics and the Differential Emission Measure Distribution , 2003 .

[115]  K. Shibata Evidence of Magnetic Reconnection in Solar Flares and a Unified Model of Flares , 1998 .

[116]  C. J. Butler,et al.  Ultraviolet radiation from stellar flares and the coronal X-ray emission for dwarf-Me stars , 1985, Nature.

[117]  H. Zirin,et al.  Delta spots and great flares , 1982 .

[118]  T. Moffett,et al.  UV Ceti stars: statistical analysis of observational data. , 1976 .