DERIVED EQUIVALENCE CLASSIFICATION OF SYMMETRIC ALGEBRAS OF POLYNOMIAL GROWTH
暂无分享,去创建一个
[1] D. Al-Kadi. Distinguishing derived equivalence classes using the second Hochschild cohomology group , 2009, 0912.2971.
[2] A. Zimmermann,et al. Generalized Reynolds ideals and derived equivalences for algebras of dihedral and semidihedral type , 2008, 0807.0688.
[3] Gizem Karaali. Book Review: Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type , 2008 .
[4] Gizem Karaali. Book Review: Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras , 2008 .
[5] K. Erdmann,et al. Deformed preprojective algebras of generalized Dynkin type , 2007 .
[6] A. Zimmermann. INVARIANCE OF GENERALISED REYNOLDS IDEALS UNDER DERIVED EQUIVALENCES , 2005, Mathematical Proceedings of the Royal Irish Academy.
[7] D. Simson,et al. Tubes and concealed algebras of Euclidean type , 2007 .
[8] Daniel Simson,et al. Elements of the Representation Theory of Associative Algebras: Techniques of Representation Theory , 2006 .
[9] K. Erdmann,et al. The stable Calabi-Yau dimension of tame symmetric algebras , 2006 .
[10] A. Skowroński. Selfinjective algebras: finite and tame type , 2006 .
[11] T. Holm,et al. Derived equivalence classification of symmetric algebras of domestic type , 2005, math/0511227.
[12] J. Murray,et al. Central ideals and Cartan invariants of symmetric algebras , 2005 .
[13] T. Holm,et al. Derived Equivalence Classification of Nonstandard Selfinjective Algebras of Domestic Type , 2005, math/0507433.
[14] T. Holm,et al. Derived equivalence classification of weakly symmetric algebras of Euclidean type , 2004 .
[15] J. Białkowski,et al. Socle deformations of selfinjective algebras of tubular type , 2004 .
[16] T. Holm,et al. Derived equivalences for tame weakly symmetric algebras having only periodic modules , 2003 .
[17] Takayoshi Wakamatsu. On Frobenius algebras , 2003 .
[18] J. Białkowski,et al. On tame weakly symmetric algebras having only periodic modules , 2003 .
[19] T. Holm,et al. On nonstandard tame selfinjective algebras having only periodic modules , 2003 .
[20] H. Krause,et al. Stable Equivalence and Generic Modules , 2000 .
[21] H. Asashiba,et al. The Derived Equivalence Classification of Representation-Finite Selfinjective Algebras , 1999 .
[22] T. Holm. Derived Equivalence Classification of Algebras of Dihedral, Semidihedral, and Quaternion Type , 1999 .
[23] Jeremy Rickard,et al. Derived Equivalences As Derived Functors , 1991 .
[24] B. Külshammer. Group-theoretical descriptions of ring-theoretical invariants of group algebras , 1991 .
[25] A. Schofield. TRIANGULATED CATEGORIES IN THE REPRESENTATION THEORY OF FINITE DIMENSIONAL ALGEBRAS (London Mathematical Society Lecture Note Series 119) , 1990 .
[26] K. Erdmann. Blocks of Tame Representation Type and Related Algebras , 1990 .
[27] J. Rickard. Derived categories and stable equivalence , 1989 .
[28] A. Skowronski. Selfinjective algebras of polynomial growth , 1989 .
[29] Jeremy Rickard,et al. Morita Theory for Derived Categories , 1989 .
[30] A. Skowroński,et al. Polynomial growth trivial extensions of simply connected algebras , 1989 .
[31] Dieter Happel,et al. Triangulated categories in the representation theory of finite dimensional algebras , 1988 .
[32] Dieter Happel,et al. On the derived category of a finite-dimensional algebra , 1987 .
[33] C. Ringel,et al. The derived category of a tubular algebra , 1986 .
[34] Burkhard Külshammer. Bemerkungenüber die Gruppenalgebra als symmmetrische Algebra, II , 1982 .
[35] Burkhard Külshammer,et al. Bemerkungen über die gruppenalgebra als symmetrische Algebra, III , 1981 .
[36] Ju. A. Drozd,et al. Tame and wild matrix problems , 1980 .
[37] Murray Gerstenhaber,et al. The Cohomology Structure of an Associative Ring , 1963 .
[38] 中山 正. On frobeniusean algebras , 1941 .