Sparse MRI Reconstruction via Multiscale L0-Continuation

"Compressed Sensing" and related L1-minimization methods for reconstructing sparse magnetic resonance images (MRI) acquired at sub-Nyquist rates have shown great potential for dramatically reducing exam duration. Nonetheless, the non-triviality of numerical implementation and computational intensity of these reconstruction algorithms has thus far precluded their widespread use in clinical practice. In this work, we propose a novel MRI reconstruction framework based on homotopy continuation of the L0 semi-norm using redescending M-estimator functions. Following analysis of the continuation scheme, the sparsity measure is extended to multiscale form and a simple numerical solver that can achieve accurate reconstructions in a matter of seconds on a standard desktop computer is presented.

[1]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Raymond H. Chan,et al.  Continuation method for total variation denoising problems , 1995, Optics & Photonics.

[3]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[4]  Lucas J. van Vliet,et al.  Separable bilateral filtering for fast video preprocessing , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[5]  A. Herment,et al.  Non-quadratic convex regularized reconstruction of MR images from spiral acquisitions , 2006, Signal Process..

[6]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[7]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[8]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[9]  Michael Elad,et al.  On the origin of the bilateral filter and ways to improve it , 2002, IEEE Trans. Image Process..

[10]  ProblemsTony,et al.  Continuation Method for Total Variation Denoising , 1995 .

[11]  Peyman Milanfar,et al.  Kernel Regression for Image Processing and Reconstruction , 2007, IEEE Transactions on Image Processing.

[12]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[13]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[14]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[15]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[16]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.