Multi-response approach to improving identifiability in model calibration

[1]  Daniel W. Apley,et al.  Updating Predictive Models: Calibration, Bias Correction and Identifiability , 2010, DAC 2010.

[2]  C. F. Jeff Wu,et al.  Experiments , 2021, Wiley Series in Probability and Statistics.

[3]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[4]  Wei Chen,et al.  A Design-Driven Validation Approach Using Bayesian Prediction Models , 2008 .

[5]  Dan Yu,et al.  Surrogate Modeling of Computer Experiments With Different Mesh Densities , 2014, Technometrics.

[6]  T. Lancaster An Introduction to Modern Bayesian Econometrics , 2004 .

[7]  Peter Z. G. Qian,et al.  Gaussian Process Models for Computer Experiments With Qualitative and Quantitative Factors , 2008, Technometrics.

[8]  Noel A Cressie,et al.  Multivariable spatial prediction , 1993 .

[9]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[10]  Wei Chen,et al.  Surrogate preposterior analyses for predicting and enhancing identifiability in model calibration , 2015 .

[11]  A. O'Hagan,et al.  Bayesian emulation of complex multi-output and dynamic computer models , 2010 .

[12]  M. J. Bayarri,et al.  Computer model validation with functional output , 2007, 0711.3271.

[13]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[14]  Marc C. Kennedy,et al.  Case studies in Gaussian process modelling of computer codes , 2006, Reliab. Eng. Syst. Saf..

[15]  Wei Chen,et al.  Bayesian Validation of Computer Models , 2009, Technometrics.

[16]  Wei Chen,et al.  Preposterior Analysis to Select Experimental Responses for Improving Identifiability in Model Uncertainty Quantification , 2013, DAC 2013.

[17]  Jason L. Loeppky,et al.  Batch sequential design to achieve predictive maturity with calibrated computer models , 2011, Reliab. Eng. Syst. Saf..

[18]  T. Louis,et al.  Empirical Bayes: Past, Present and Future , 2000 .

[19]  Sallie Keller-McNulty,et al.  Combining experimental data and computer simulations, with an application to flyer plate experiments , 2006 .

[20]  Geoffrey E. Hinton,et al.  Evaluation of Gaussian processes and other methods for non-linear regression , 1997 .

[21]  Peter Z. G. Qian,et al.  Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments , 2008, Technometrics.

[22]  Paul D. Arendt,et al.  A preposterior analysis to predict identifiability in the experimental calibration of computer models , 2016 .

[23]  Paul D. Arendt,et al.  Quantification of model uncertainty: Calibration, model discrepancy, and identifiability , 2012 .

[24]  Alyson G. Wilson,et al.  Integrated Analysis of Computer and Physical Experiments , 2004, Technometrics.

[25]  V. R. Joseph,et al.  Statistical Adjustments to Engineering Models , 2009 .

[26]  J. Sacks,et al.  Analysis of protein activity data by Gaussian stochastic process models. , 1999, Journal of biopharmaceutical statistics.

[27]  James O. Berger,et al.  A Framework for Validation of Computer Models , 2007, Technometrics.

[28]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[29]  Amit Kumar Maheshwari,et al.  Modified Johnson–Cook material flow model for hot deformation processing , 2010 .

[30]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[31]  Xun Huan,et al.  Simulation-based optimal Bayesian experimental design for nonlinear systems , 2011, J. Comput. Phys..

[32]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[33]  James O. Berger,et al.  A Bayesian analysis of the thermal challenge problem , 2008 .

[34]  Liping Wang,et al.  Meta Modeling Techniques and Optimal Design of Experiments for Transient Inverse Modeling Applications , 2010 .

[35]  Derek Bingham,et al.  Follow-up Experimental Designs for Computer Models and Physical Processes , 2011 .

[36]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[37]  Thomas J. Santner,et al.  Simultaneous Determination of Tuning and Calibration Parameters for Computer Experiments , 2009, Technometrics.

[38]  James O. Berger,et al.  Modularization in Bayesian analysis, with emphasis on analysis of computer models , 2009 .

[39]  Dorin Drignei,et al.  A kriging approach to the analysis of climate model experiments , 2009 .

[40]  A. O'Hagan,et al.  Gaussian process emulation of dynamic computer codes , 2009 .