Numerical study of shear-dependent non-Newtonian fluids in compliant vessels

The aim of this contribution is to present recent results on numerical modelling of non-Newtonian flow in compliant stenosed vessels with application in hemodynamics. We consider two models of shear-thinning non-Newtonian fluids and compare them with the Newtonian model. For the structure problem, the generalized string equation for radial symmetric tubes is used and extended to a stenosed vessel. The global iterative approach to approximate the fluid-structure interaction is used. Finally, we present numerical experiments for some non-Newtonian models, comparisons with the Newtonian model and the results for hemodynamic wall parameters such as the wall shear stress and the oscillatory shear index.

[1]  Fabio Nobile,et al.  Fluid Structure Interaction in Blood Flow Problems , 1999 .

[2]  M. Lukáčová-Medvid'ová,et al.  On the existence and uniqueness of non-Newtonian shear-dependent flow in compliant vessels , 2008 .

[3]  M. Lukácová-Medvidová,et al.  Numerical modelling of shear‐thinning non‐Newtonian flows in compliant vessels , 2008 .

[4]  K. Rajagopal,et al.  The flow of blood in tubes: theory and experiment , 1998 .

[5]  A. Zaušková,et al.  2D Navier–Stokes Equations in a Time Dependent Domain with Neumann Type Boundary Conditions , 2010 .

[6]  P. Plotnikov,et al.  HOPF SOLUTIONS TO A FLUID-ELASTIC INTERACTION MODEL , 2008 .

[7]  A. Quarteroni,et al.  OPTIMAL CONTROL AND SHAPE OPTIMIZATION OF AORTO-CORONARIC BYPASS ANASTOMOSES , 2003 .

[8]  Raducanu Razvan,et al.  MATHEMATICAL MODELS and METHODS in APPLIED SCIENCES , 2012 .

[9]  K. Rajagopal,et al.  Regulation of Hemostatic System Function by Biochemical and Mechanical Factors , 2007 .

[10]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[11]  Antonin Chambolle,et al.  Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate , 2005 .

[12]  Suncica Canic,et al.  Modeling Viscoelastic Behavior of Arterial Walls and Their Interaction with Pulsatile Blood Flow , 2006, SIAM J. Appl. Math..

[13]  A. Constantin,et al.  Particle Trajectories in Linear Water Waves , 2007 .

[14]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[15]  Alfio Quarteroni,et al.  Mathematical Modelling and Numerical Simulation of the Cardiovascular System , 2004 .

[16]  R. Rannacher,et al.  Advances in Mathematical Fluid Mechanics , 2010 .

[17]  Sandra Nägele,et al.  Mehrgitterverfahren für die inkompressiblen Navier-Stokes Gleichungen im laminaren und turbulenten Regime unter Berücksichtigung verschiedener Stabilisierungsmethoden , 2003 .

[18]  Dominique Chapelle,et al.  [Numerical simulation of the cardiovascular system]. , 2005, Medecine sciences : M/S.

[19]  Charles A. Taylor,et al.  Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries , 2006 .

[20]  Tim Kröger,et al.  An evolution Galerkin scheme for the shallow water magnetohydrodynamic equations in two space dimensions , 2005 .

[21]  H. B. Veiga On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem , 2004 .

[22]  F. N. van de Vosse,et al.  The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. , 1999, Journal of biomechanics.

[23]  Paolo Crosetto,et al.  Fluid-Structure Interaction Problems in Hemodynamics , 2011 .

[24]  Adélia Sequeira,et al.  Numerical simulations of shear dependent viscoelastic flows with a combined finite element-finite volume method , 2007, Comput. Math. Appl..

[25]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[26]  T. Bodnár,et al.  Numerical Study of the Significance of the Non-Newtonian Nature of Blood in Steady Flow Through a Stenosed Vessel , 2010 .