Optimization of Engineering Processes Including Heating in Time-Dependent Domains

We present two models for engineering processes, where thermal effects and time-dependent domains play an important role. Typically, the parabolic heat equation is coupled with other equations. Challenges for the optimization of such systems are presented.

[1]  Ricardo H. Nochetto,et al.  A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..

[2]  Berend Denkena,et al.  Modeling a thermomechanical NC-simulation , 2013 .

[4]  W. Kurz,et al.  Fundamentals of Solidification , 1990 .

[5]  Berend Denkena,et al.  Identification of the specific cutting force for geometrically defined cutting edges and varying cutting conditions , 2014 .

[6]  Alfred Schmidt,et al.  Energy dissipation in laser-based free form heading: a numerical approach , 2014, Prod. Eng..

[7]  Berend Denkena,et al.  Prediction of Temperature Induced Shape Deviations in dry Milling , 2015 .

[8]  Eberhard Bänsch,et al.  Finite element discretization of the Navier–Stokes equations with a free capillary surface , 2001, Numerische Mathematik.

[9]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[10]  F. Vollertsen,et al.  An enhanced model for energy balance in laser-based free form heading , 2009 .

[11]  A. Schmidt,et al.  Finite element methods for problems with solid‐liquid‐solid phase transitions and free melt surface , 2012 .

[12]  Berend Denkena,et al.  Contact zone analysis based on multidexel workpiece model and detailed tool geometry representation , 2012 .

[13]  E. Bänsch,et al.  An ALE finite element method for a coupled Stefan problem and Navier–Stokes equations with free capillary surface , 2013 .