Evidence for bicarbonate formation on vacuum annealed TiO2(110) resulting from a precursor-mediated interaction between CO2 and H2O
暂无分享,去创建一个
[1] M. J. Gillan,et al. First-principles molecular dynamics simulation of water dissociation on TiO2 (110) , 1996 .
[2] Michael A. Henderson,et al. Structural Sensitivity in the Dissociation of Water on TiO2 Single-Crystal Surfaces , 1996 .
[3] Ng,et al. Evidence for the Tunneling Site on Transition-Metal Oxides: TiO2(110). , 1996, Physical review letters.
[4] Michael A. Henderson,et al. An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption , 1996 .
[5] John T. Yates,et al. CO chemisorption on TiO2(110): Oxygen vacancy site influence on CO adsorption , 1995 .
[6] M. Gillan,et al. The adsorption of H2O on TiO2 and SnO2(110) studied by first-principles calculations , 1995, mtrl-th/9508009.
[7] W. Göpel,et al. The geometric structure of intrinsic defects at TiO2(110) surfaces: an STM study , 1995 .
[8] S. C. Parker,et al. Electronic structure and atomistic simulations of the ideal and defective surfaces of rutile , 1995 .
[9] C. Noguera,et al. Theoretical investigation of hydroxylated oxide surfaces , 1995 .
[10] M. A. Henderson. The influence of oxide surface structure on adsorbate chemistry : desorption of water from the smooth, the microfaceted and the ion sputtered surfaces of TiO2(100) , 1994 .
[11] J. Yates,et al. TI3+ DEFECT SITES ON TIO2(110) : PRODUCTION AND CHEMICAL DETECTION OF ACTIVE SITES , 1994 .
[12] Y. Yanagisawa,et al. OXYGEN EXCHANGE BETWEEN CO2 ADSORBATE AND TIO2 SURFACES , 1994 .
[13] Thomas Bredow,et al. Cluster simulation of bulk properties for stoichiometric and non-stoichiometric rutile , 1994 .
[14] N. Zhang,et al. Ab initio equilibrium constants for H2O–H2O and H2O–CO2 , 1994 .
[15] Ramamoorthy,et al. Defects on TiO2 (110) surfaces. , 1994, Physical review. B, Condensed matter.
[16] Christian Minot,et al. A theoretical investigation of water adsorption on titanium dioxide surfaces , 1994 .
[17] Charles T. Campbell,et al. The interaction of H2O with a TiO2(110) surface , 1994 .
[18] T. Bredow,et al. Theoretical investigations on adsorption at ion crystal surfaces , 1993 .
[19] C. Noguera,et al. Acido-basic properties of simple oxide surfaces. III: Systematics of H+ and OH- adsorption , 1993 .
[20] B. L. Maschhoff,et al. Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities , 1992 .
[21] G. Busca,et al. Low-temperature CO2 adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species , 1991 .
[22] Kenneth M. Merz,et al. Gas-phase and solution-phase potential energy surfaces for CO2 + nH2O (n = 1,2) , 1990 .
[23] H. S. Gutowsky,et al. Structure of the H2O-(CO2)2 trimer , 1990 .
[24] J. R. Damewood,et al. Interaction of carbon dioxide and water investigated by a combination of ab initio and SOLDRI-MM2 techniques , 1989 .
[25] Richard L. Kurtz,et al. Synchrotron radiation studies of H2O adsorption on TiO2(110) , 1989 .
[26] K. I. Peterson,et al. The structure of the CO2-CO2-H2O van der Waals complex determined by microwave spectroscopy , 1989 .
[27] M. Schmeits,et al. Electronic structure of oxygen vacancies on TiO2(110) and SnO2(110) surfaces , 1987 .
[28] James A. Dumesic,et al. Adsorption of CO, CO2, H2, and H2O on titania surfaces with different oxidation states , 1985 .
[29] C. Campbell,et al. Design considerations for simple gas dosers in surface science applications , 1985 .
[30] W. Göpel,et al. Localized and delocalized vibrations on TiO2(110) studied by high-resolution electron-energy-loss spectroscopy , 1984 .
[31] J. Paulson,et al. Translational energy dependence of cross sections for reactions of OH− (H2O)n with CO2 and SO2 , 1984 .
[32] T. Ha,et al. A theoretical study of the formation of carbonic acid from the hydration of carbon dioxide: a case of active solvent catalysis , 1984 .
[33] W. Göpel,et al. Surface defects of TiO2(110): A combined XPS, XAES AND ELS study , 1984 .
[34] K. I. Peterson,et al. Structure and internal rotation of H2O–CO2, HDO–CO2, and D2O–CO2 van der Waals complexes , 1984 .
[35] V. Henrich,et al. Chemisorption of H 2 O on the surface of Ti 2 O 3 : Role of d electrons and ligand geometry , 1982 .
[36] J. White,et al. Characterization of species adsorbed on oxidized and reduced anatase , 1982 .
[37] G. Dresselhaus,et al. Chemisorbed phases of H2O on TiO2 and SrTiO3 , 1977 .
[38] Y. Pocker,et al. Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in water and water-d2. Acid-base and metal ion catalysis , 1977 .
[39] B. Roos,et al. Ab initio molecular orbital calculations on the water-carbon dioxide system. Reaction pathway for water + carbon dioxide .fwdarw. carbonic acid , 1977 .
[40] G. Karlström,et al. Ab initio molecular orbital calculations on the water-carbon dioxide system: carbonic acid , 1976 .
[41] M. Primet,et al. Infrared study of the surface of titanium dioxides. II. Acidic and basic properties , 1971 .
[42] D. Yates. INFRARED STUDIES OF THE SURFACE HYDROXYL GROUPS ON TITANIUM DIOXIDE, AND OF THE CHEMISORPTION OF CARBON MONOXIDE AND CARBON DIOXIDE , 1961 .
[43] J. T. Ranney,et al. The Surface Science of Metal Oxides , 1995 .
[44] F. Solymosi,et al. Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 Catalysts , 1994 .
[45] K. I. Peterson,et al. Hydration of carbon dioxide: The structure of H2O–H2O–CO2 from microwave spectroscopy , 1991 .
[46] P. A. Cox,et al. THE HIGH-RESOLUTION ELECTRON-ENERGY-LOSS SPECTRUM OF TIO2(110) , 1986 .
[47] G. Busca,et al. FT-IR characterization of the surface acidity of different titanium dioxide anatase preparations , 1985 .
[48] G. Karlström,et al. Ab initio molecular orbital calculations on the water-carbon dioxide system: Molecular complexes , 1975 .
[49] J. A. Hockey,et al. Infra-red studies of rutile surfaces. Part 2.—Hydroxylation, hydration and structure of rutile surfaces , 1971 .
[50] G. D. Parfitt,et al. Infra-red study of the surface properties of rutile. Water and surface hydroxyl species , 1971 .