MOAB : a spatially explicit, individual-based expert system for creating animal foraging models

[1]  J. Finn,et al.  A generalizable artificial intelligence model for simulating duck nest depredation in the northern prairie region of north america , 1996 .

[2]  J. Crawford,et al.  Relationships between vegetational structure and predation of artificial sage grouse nests , 1995 .

[3]  Uno Wennergren,et al.  Connecting landscape patterns to ecosystem and population processes , 1995, Nature.

[4]  R. Dieckmann,et al.  The expert system shell SAFRaN and its use to estimate the contaminant load of ground water and soil caused by deposition of air pollutants , 1994 .

[5]  Monica G. Turner,et al.  Simulating Winter Interactions Among Ungulates, Vegetation, and Fire in Northern Yellowstone Park , 1994 .

[6]  Piran C. L. White,et al.  Encounters between red foxes (Vulpes vulpes): implications for territory maintenance, social cohesion and dispersal , 1994 .

[7]  D. McCullough,et al.  Wildlife 2001: Populations , 1996 .

[8]  H. Pulliam,et al.  Ecological Processes That Affect Populations in Complex Landscapes , 1992 .

[9]  C. Walters Trends in Applied Ecological Modelling , 1992 .

[10]  J. Roese,et al.  Habitat heterogeneity and foraging efficiency: an individual-based model , 1991 .

[11]  C. Patrick Doncaster,et al.  Drifting territoriality in the red fox Vulpes vulpes , 1991 .

[12]  William E. Grant,et al.  AI modelling of animal movements in a heterogeneous habitat , 1989 .

[13]  Edward J. Rykiel,et al.  Artificial intelligence and expert systems in ecology and natural resource management , 1989 .

[14]  Douglas H. Johnson,et al.  Importance of individual species of predators on nesting success of ducks in the Canadian Prairie Pothole Region , 1989 .

[15]  Lee Ann Graham,et al.  An artificial intelligence model of the behavior and impacts of feral horses on barrier island systems , 1989 .

[16]  M. Turner,et al.  LANDSCAPE ECOLOGY : The Effect of Pattern on Process 1 , 2002 .

[17]  J. Maccracken,et al.  Coyote feeding strategies in Southeastern Idaho: optimal foraging by an opportunistic predator? , 1987 .

[18]  Patrick Henry Winston,et al.  Artificial intelligence (2nd ed.) , 1984 .

[19]  Edward H. Shortliffe,et al.  Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project (The Addison-Wesley series in artificial intelligence) , 1984 .

[20]  J. M. David,et al.  Computer simulation model of the EPI-enzootic disease of vulpine rabies , 1982 .

[21]  J. Boissin,et al.  Plasma thyroxine and testosterone levels in the red fox (Vulpes vulpes L.) during the annual cycle. , 1981, General and Comparative Endocrinology.

[22]  B. C. Patten,et al.  Systems Analysis and Simulation in Ecology , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  C. Pils,et al.  Population dynamics, predator-prey relationships and management of the red fox in Wisconsin , 1978 .

[24]  Hal Caswell,et al.  12 – The Validation Problem , 1976 .

[25]  A. Sargeant Red fox spatial characteristics in relation to waterfowl predation , 1972 .

[26]  Ernest D. Ables,et al.  Home-Range Studies of Red Foxes (Vulpes Vulpes) , 1969 .

[27]  D. B. Siniff,et al.  A Simulation Model of Animal Movement Patterns , 1969 .