Finite element simulation of piezoelectric vibrator gyroscopes

A finite element approach to the simulation of piezoelectric vibrator gyroscopes is presented for characteristic prediction. The formulation is given including the effect of Coriolis force due to rotation for a piezoelectric thin plate, which is considered to be two-dimensional in plane vibration. For numerical examples, the gyroscopes of a thin square plate, and a cross-bar and a ring built in the plate are considered, which pave the way for the development of the gyroscopes of monolithic configuration. The effect of the rotation on the modal shapes, the resonant frequencies, and the transmission characteristics are discussed demonstrating the sensing capability against the rotation.