TOPoS - II. On the bimodality of carbon abundance in CEMP stars Implications on the early chemical evolution of galaxies

Context. In the course of the TOPoS (Turn Off Primordial Stars) survey, aimed at discovering the lowest metallicity stars, we have found several carbon-enhanced metal-poor (CEMP) stars. These stars are very common among the stars of extremely low metallicity and provide important clues to the star formation processes. We here present our analysis of six CEMP stars. Aims. We want to provide the most complete chemical inventory for these six stars in order to constrain the nucleosynthesis pro cesses responsible for the abundance patterns. Methods. We analyse both X-Shooter and UVES spectra acquired at the VLT. We used a traditional abundance analysis based on OSMARCS 1D Local Thermodynamic Equilibrium (LTE) model atm ospheres and theturbospectrum line formation code. Results. Calcium and carbon are the only elements that can be measured in all six stars. The range is −5.0 ≤[Ca/H]< −2.1 and 7.12≤A(C)≤ 8.65. For star SDSS J1742+2531 we were able to detect three Fei lines from which we deduced [Fe/H] =−4.80, from four Caii lines we derived [Ca/H]=‐4.56, and from synthesis of the G-band we derived A(C)=7.26. For SDSS J1035+0641 we were not able to detect any iron lines, yet we could place a robust (3σ) upper limit of [Fe/H]<−5.0 and measure the Ca abundance, with [Ca/H]=‐5.0, and carbon, A(C)=6.90, suggesting that this star could be even more metal-poor than SDSS J1742+2531. This makes these two stars the seventh and eighth stars known so far with [Fe/H]<−4.5, usually termed ultra-iron-poor (UIP) stars. No lithium is detected in the spectrum of SDSS J1742+2531 or SDSS J1035+0641, which implies a robust upper limit of A(Li)< 1.8 for both stars. Conclusions. Our measured carbon abundances confirm the bimodal distribu tion of carbon in CEMP stars, identifying a high-carbon band and a low-carbon band. We propose an interpretation of this bimodality according to which the stars on the high-carbon band are the result of mass transfer from an AGB companion, while the stars on the low-carbon band are genuine fossil records of a gas cloud that has also been enriched by a faint supernova (SN) providing carbon and the lighter elements. The abundance pattern of the UIP stars shows a large star-to-star scatter in the [X/Ca] ratios for all elements up to aluminium (up to 1 dex), but this scatter drops for heavier elements and is at most of the order of a factor of two. We propose that this can be explained if these stars are formed from gas that has been chemically enriched by several SNe, that produce the roughly constant [X/Ca] ratios for the heavier elements, and in some cases the gas has also been polluted by the ejecta of a faint SN that contributes the lighter elements in variabl e amounts. The absence of lithium in three of the four known unevolved UIP stars can be explained by a dominant role of fragmentation in the formation of these stars. This would result either in a destr uction of lithium in the pre-main-sequence phase, through rotational mixing or to a lack of lateaccretion from a reservoir of fresh gas. Th e phenomenon should have varying degrees of effi ciency.

[1]  T. Beers,et al.  First stars VI - Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements , 2004, astro-ph/0409536.

[2]  Astronomy,et al.  A holistic approach to carbon-enhanced metal-poor stars , 2009, 0901.4737.

[3]  Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies , 2000, astro-ph/0009505.

[4]  Judith G. Cohen,et al.  THE CHEMICAL EVOLUTION OF THE DRACO DWARF SPHEROIDAL GALAXY , 2009, 0906.1006.

[5]  Z. Magic,et al.  A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36−670839.3 , 2014, Nature.

[6]  T. Beers,et al.  THE MOST METAL-POOR STARS. II. CHEMICAL ABUNDANCES OF 190 METAL-POOR STARS INCLUDING 10 NEW STARS WITH [Fe/H] ⩽ −3.5,, , 2012, 1208.3003.

[7]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[8]  A. Korn,et al.  A non-LTE study of neutral and singly-ionized calcium in late-type stars , 2006, astro-ph/0609527.

[9]  T. Beers,et al.  First stars VIII. Enrichment of the neutron-capture elements in the early Galaxy , 2007, 0709.3454.

[10]  T. Beers,et al.  LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS , 2008, 0904.1448.

[11]  Georges Meynet,et al.  The first stars: CEMP--no stars and signatures of spinstars , 2014, 1412.5754.

[12]  T. Beers,et al.  THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .

[13]  J. Bland-Hawthorn,et al.  Pregalactic metal enrichment: The chemical signatures of the first stars , 2011, 1101.4024.

[14]  C. Hirata,et al.  Suppression and spatial variation of early galaxies and minihaloes , 2010, 1012.2574.

[15]  S. Shectman,et al.  CS 22964–161: A Double-Lined Carbon- and s-Process-Enhanced Metal-Poor Binary Star , 2007, 0712.3228.

[16]  R. Klessen,et al.  On the formation of very metal-poor stars: The case of SDSS J1029151+172927 , 2012, 1201.2695.

[17]  Anna Frebel,et al.  HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: URSA MAJOR II and COMA BERENICES , 2009, 0902.2395.

[18]  K. Omukai,et al.  Fragmentation of star-forming clouds enriched with the first dust , 2006, astro-ph/0603766.

[19]  M. Spite,et al.  Lithium abundance at the formation of the Galaxy , 1982, Nature.

[20]  NLTE determination of the sodium abundance in a homogeneous sample of extremely metal-poor stars , 2007, astro-ph/0701199.

[21]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[22]  G. Chiaki,et al.  Dust grain growth and the formation of the extremely primitive star SDSS J102915+172927 , 2014, 1401.5057.

[23]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[24]  R. Klessen,et al.  THE DELAY OF POPULATION III STAR FORMATION BY SUPERSONIC STREAMING VELOCITIES , 2011, 1101.5493.

[25]  T. Beers,et al.  First stars XI. Chemical composition of the extremely metal-poor dwarfs in the binary CS 22876-032 , 2007, 0712.2949.

[26]  The First Chemical Enrichment in the Universe and the Formation of Hyper Metal-Poor Stars , 2005, Science.

[27]  P. Molaro,et al.  The ESO UVES advanced data products quasar sample – III. Evidence of bimodality in the [N/α] distribution , 2014, 1407.8306.

[28]  C. Chiappini,et al.  Are C-rich ultra iron-poor stars also He-rich? , 2010, 1004.5024.

[29]  T. Beers,et al.  LITHIUM ABUNDANCES IN CARBON-ENHANCED METAL-POOR STARS , 2012, 1203.3295.

[30]  N. Tominaga,et al.  EXPLOSIVE NUCLEOSYNTHESIS OF WEAK r-PROCESS ELEMENTS IN EXTREMELY METAL-POOR CORE-COLLAPSE SUPERNOVAE , 2009 .

[31]  J. Pel,et al.  The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .

[32]  L. Koopmans,et al.  The impact of primordial supersonic flows on early structure formation, reionization and the lowest-mass dwarf galaxies , 2010, 1011.4006.

[33]  Christopher Hirata,et al.  Relative velocity of dark matter and baryonic fluids and the formation of the first structures , 2010, 1005.2416.

[34]  Y. Mellier,et al.  The Science Case for Multi-Object Spectroscopy on the European ELT , 2015, 1501.04726.

[35]  Takeo Minezaki,et al.  Nucleosynthetic signatures of the first stars , 2005, Nature.

[36]  R. Klessen,et al.  The Formation and Fragmentation of Disks Around Primordial Protostars , 2011, Science.

[37]  T. Beers,et al.  SEARCHES FOR METAL-POOR STARS FROM THE HAMBURG/ESO SURVEY USING THE CH G BAND , 2011, 1109.3993.

[38]  V. Bromm,et al.  THE FIRST STARS: A LOW-MASS FORMATION MODE , 2013, 1307.1798.

[39]  R. Klessen,et al.  THE EFFECT OF DUST COOLING ON LOW-METALLICITY STAR-FORMING CLOUDS , 2011, 1101.4891.

[40]  T. Beers,et al.  CARBON-ENHANCED METAL-POOR STARS IN THE INNER AND OUTER HALO COMPONENTS OF THE MILKY WAY , 2011, 1103.3067.

[41]  Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor , 2009, Nature.

[42]  M. Shetrone,et al.  Binarity in carbon-enhanced metal-poor stars , 2014, 1404.0385.

[43]  T. Beers,et al.  Carbon-enhanced Metal-poor Stars. I. Chemical Compositions of 26 Stars , 2006, astro-ph/0609702.

[44]  T. Beers,et al.  Carbon-Enhanced Metal-Poor Stars. III. Main-Sequence Turnoff Stars from the SDSS SEGUE Sample , 2008, 0801.4187.

[45]  R. Klessen,et al.  WIMP DM and first stars: suppression of fragmentation in primordial star formation , 2012, 1210.1582.

[46]  Z. Haiman,et al.  Can Supermassive Black Holes Form in Metal-enriched High-Redshift Protogalaxies? , 2008, 0804.3141.

[47]  S. Woosley,et al.  THE NUCLEOSYNTHETIC IMPRINT OF 15–40 M☉ PRIMORDIAL SUPERNOVAE ON METAL-POOR STARS , 2009, 0907.3885.

[48]  T. Beers,et al.  First stars - XIII. Two extremely metal-poor RR Lyrae stars , 2011, 1101.2207.

[49]  Kinetic equilibrium of iron in the atmospheres of cool stars - III. The ionization equilibrium of selected reference stars , 2003, astro-ph/0306337.

[50]  V. Bromm,et al.  Constraining the Statistics of Population III Binaries , 2012, 1211.1889.

[51]  Landessternwarte,et al.  Chemical abundances of distant extremely metal-poor unevolved stars , 2012, 1204.1641.

[52]  Volker Springel,et al.  SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.

[53]  R. Wyse,et al.  ELEMENTAL ABUNDANCES AND THEIR IMPLICATIONS FOR THE CHEMICAL ENRICHMENT OF THE BOÖTES I ULTRAFAINT GALAXY , 2012, 1212.0598.

[54]  N. Prantzos Production and evolution of Li, Be, and B isotopes in the Galaxy , 2012, 1203.5662.

[55]  T. Beers,et al.  HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. II. BINARY FRACTION , 2014, 1410.2674.

[56]  J. Xavier Prochaska,et al.  METALLICITY EVOLUTION OF DAMPED Lyα SYSTEMS OUT TO z ∼ 5 , 2012, 1205.5047.

[57]  International Centre for Radio Astronomy Research,et al.  A new candidate for probing Population III nucleosynthesis with carbon-enhanced damped Lyα systems† , 2012, 1201.1004.

[58]  T. Beers,et al.  LITHIUM ABUNDANCES IN CARBON-ENHANCED METAL-POOR STARS , 2012 .

[59]  S. Cristallo,et al.  The s-Process in Low Metallicity Stars. II. Interpretation of High-Resolution Spectroscopic Observations with AGB models , 2011, 1108.0500.

[60]  First stars IX- mixing in extremely metal-poor giants. Variation of the 12C/13C, [Na/Mg] and [Al/Mg] ratios , 2006, astro-ph/0605056.

[61]  F. Thevenin,et al.  Stellar Iron Abundances: Non-LTE Effects , 1999, astro-ph/9906433.

[62]  R. Klessen,et al.  Turbulence-induced disc formation in strongly magnetized cloud cores , 2013, 1302.4901.

[63]  R. Klessen,et al.  Disc formation in turbulent massive cores: circumventing the magnetic braking catastrophe , 2012, 1201.5302.

[64]  Vanessa Hill,et al.  The extremely low-metallicity tail of the Sculptor dwarf spheroidal galaxy , 2012, 1211.4592.

[65]  Hideyuki Umeda,et al.  First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star , 2003, Nature.

[66]  A. Loeb,et al.  EFFECT OF STREAMING MOTION OF BARYONS RELATIVE TO DARK MATTER ON THE FORMATION OF THE FIRST STARS , 2010, 1011.4512.

[67]  M. Wilkinson,et al.  An inefficient dwarf: chemical abundances and the evolution of the Ursa Minor dwarf spheroidal galaxy , 2015, 1502.04133.

[68]  Christoph Federrath,et al.  THE GENERATION OF STRONG MAGNETIC FIELDS DURING THE FORMATION OF THE FIRST STARS , 2010 .

[69]  P. Bonifacio,et al.  On the Origin of HE 0107–5240, the Most Iron-deficient Star Presently Known , 2003, astro-ph/0307527.

[70]  K. Nomoto,et al.  FAINT POPULATION III SUPERNOVAE AS THE ORIGIN OF THE MOST IRON-POOR STARS , 2014, 1404.4817.

[71]  A. Korn,et al.  HE 1327−2326, AN UNEVOLVED STAR WITH [Fe/H] < −5.0. III. DOES ITS ATMOSPHERE REFLECT ITS NATAL COMPOSITION? , 2009, 0903.3885.

[72]  R. Klessen,et al.  ON THE INITIAL MASS FUNCTION OF LOW-METALLICITY STARS: THE IMPORTANCE OF DUST COOLING , 2013 .

[73]  P. Bonifacio,et al.  Carbon-enhanced metal-poor stars: the most pristine objects? , 2013, 1303.1791.

[74]  R. Klessen,et al.  TOPoS: I. Survey design and analysis of the first sample , 2013, 1310.6963.

[75]  Analysis of the carbon-rich very metal-poor dwarf G77-61 , 2005, astro-ph/0501535.

[76]  V. Bromm Formation of the first stars , 2005, Proceedings of the International Astronomical Union.

[77]  Georges Meynet,et al.  Rotating massive stars: From first stars to gamma ray bursts , 2012 .

[78]  J. Simon,et al.  SEGUE 1: AN UNEVOLVED FOSSIL GALAXY FROM THE EARLY UNIVERSE , 2014, 1403.6116.

[79]  F. Iocco Dark Matter Capture and Annihilation on the First Stars: Preliminary Estimates , 2008, 0802.0941.

[80]  P. Bonifacio,et al.  NLTE determination of the calcium abundance and 3D corrections in extremely metal-poor stars , 2012, 1204.1139.

[81]  P. Madau,et al.  CARBON-ENHANCED METAL-POOR STARS: RELICS FROM THE DARK AGES , 2014, 1405.7369.

[82]  C. Chiappini,et al.  A strong case for fast stellar rotation at very low metallicities , 2006 .

[83]  Volker Bromm,et al.  The Formation of the First Stars. I. The Primordial Star-forming Cloud , 2002 .

[84]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[85]  Wei Wang,et al.  SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS , 2015, 1501.03062.

[86]  R. L. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[87]  P. Bonifacio,et al.  Extremely metal-poor stars from the SDSS , 2008, 0809.2948.

[88]  T. Beers,et al.  Extremely Metal-poor Stars. IV. The Carbon-rich Objects , 1997 .

[89]  Princeton,et al.  The Sloan Digital Sky Survey View of the Palomar-Green Bright Quasar Survey , 2005, astro-ph/0506022.

[90]  T. Beers,et al.  First stars X. The nature of three unevolved Carbon-Enhanced Metal-Poor stars ⋆ , 2006, astro-ph/0608112.

[91]  R. Klessen,et al.  GRAVITATIONAL FRAGMENTATION IN TURBULENT PRIMORDIAL GAS AND THE INITIAL MASS FUNCTION OF POPULATION III STARS , 2010, 1006.1508.

[92]  G. Chiaki,et al.  ONE HUNDRED FIRST STARS: PROTOSTELLAR EVOLUTION AND THE FINAL MASSES , 2013, 1308.4456.

[93]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[94]  Norbert Christlieb,et al.  NORMAL AND OUTLYING POPULATIONS OF THE MILKY WAY STELLAR HALO AT [Fe/H] <−2 , 2013, 1310.1527.

[95]  K. Omukai,et al.  Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.

[96]  P. Bonifacio,et al.  The low Sr/Ba ratio on some extremely metal-poor stars , 2014, 1410.0847.

[97]  Gepi,et al.  Lithium abundances in extremely metal-poor turn-off stars , 2012, 1206.7008.

[98]  Formation and evolution of primordial protostellar systems , 2012 .

[99]  R. Klessen,et al.  Low-metallicity star formation: relative impact of metals and magnetic fields , 2014, 1406.0346.

[100]  Granada,et al.  s‐Process in low‐metallicity stars – I. Theoretical predictions , 2010, 1001.5376.

[101]  E. Kirby,et al.  DETAILED ABUNDANCES OF TWO VERY METAL-POOR STARS IN DWARF GALAXIES , 2012, 1209.3778.

[102]  M. Asplund,et al.  THE MOST METAL-POOR STARS. IV. THE TWO POPULATIONS WITH [Fe/H] ≲ −3.0 , 2012, 1211.3157.

[103]  M. Ishigaki,et al.  Chemical compositions of six metal-poor stars in the ultra-faint dwarf spheroidal galaxy Boötes I , 2014, 1401.1265.

[104]  P. Bonifacio,et al.  Three carbon-enhanced metal-poor dwarf stars from the SDSS - Chemical abundances from CO5BOLD 3D hydrodynamical model atmospheres , 2010, 1002.1670.

[105]  R. Klessen,et al.  Rotation and internal structure of Population III protostars , 2012, 1209.1439.

[106]  R. Michael Rich,et al.  Draco 119: A Remarkable Heavy-Element-deficient Giant , 2004, astro-ph/0409646.

[107]  T. Beers,et al.  First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001 - Implications for the r-process site(s) and radioactive cosmochronology , 2002, astro-ph/0203462.

[108]  V. Hill,et al.  First Stars II. Elemental abundances in the extremely metal-poor star CS 22949-037 ? A diagnostic of early massive supernovae , 2002, astro-ph/0205232.

[109]  E. Rollinde,et al.  CHEMICAL ENRICHMENT OF DAMPED Lyα SYSTEMS AS A DIRECT CONSTRAINT ON POPULATION III STAR FORMATION , 2013, 1301.4201.

[110]  Very low-metallicity massive stars: - Pre-SN evolution models and primary nitrogen production , 2006, astro-ph/0608170.

[111]  The Binary Frequency Among Carbon-enhanced, s-Process-rich, Metal-poor Stars , 2004, astro-ph/0412422.

[112]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[113]  A. Loeb,et al.  The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.

[114]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[115]  N. Yoshida,et al.  PROTOSTELLAR FEEDBACK AND FINAL MASS OF THE SECOND-GENERATION PRIMORDIAL STARS , 2012, 1210.3035.

[116]  P. Noterdaeme,et al.  A study of low-metallicity DLAs at high redshift and C ii* as a probe of their physical conditions , 2014, 1402.2975.

[117]  R. Salvaterra,et al.  The formation of the extremely primitive star SDSS J102915+172927 relies on dust , 2012, 1203.4234.

[118]  T. Beers,et al.  HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS , 2012, 1210.1946.

[119]  David K. Lai,et al.  THE [Fe/H], [C/Fe], AND [α/Fe] DISTRIBUTIONS OF THE BOÖTES I DWARF SPHEROIDAL GALAXY , 2011, 1106.2168.

[120]  Ralf S. Klessen,et al.  Small-scale dynamo action during the formation of the first stars and galaxies - I. The ideal MHD limit , 2010, 1003.1135.

[121]  The metal-poor end of the Spite plateau - I. Stellar parameters, metallicities, and lithium abundances , 2010, 1003.4510.

[122]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[123]  R. Klessen,et al.  Reionization - A probe for the stellar population and the physics of the early universe. , 2008, 0807.3802.

[124]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[125]  Simone Bianchi,et al.  The first low‐mass stars: critical metallicity or dust‐to‐gas ratio? , 2011, 1109.2900.

[126]  N. Christlieb,et al.  HE 0107-5240, A CHEMICALLY ANCIENT STAR. I. A DETAILED ABUNDANCE ANALYSIS , 2004 .

[127]  B. Plez,et al.  Turbospectrum: Code for spectral synthesis , 2012 .

[128]  C. Steidel,et al.  A carbon-enhanced metal-poor damped Lyα system: probing gas from Population III nucleosynthesis? , 2010, 1011.0733.

[129]  S. Glover The First Stars , 2012, 1209.2509.

[130]  T. Beers,et al.  Extremely Metal-poor Stars. IX. CS 22949-037 and the Role of Hypernovae , 2002 .

[131]  T. Beers,et al.  He 1327-2326, an unevolved star with [Fe/H] < -5.0. I. A comprehensive abundance analysis , 2005, astro-ph/0509206.

[132]  V. Belokurov,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE HIGHLY UNUSUAL CHEMICAL COMPOSITION OF THE HERCULES DWARF SPHEROIDAL GALAXY 1 , 2022 .

[133]  R. Klessen,et al.  The First Stellar Cluster , 2007, 0706.0613.

[134]  J. Prochaska,et al.  Detection of Pristine Gas Two Billion Years After the Big Bang , 2011, Science.

[135]  L. Pasquini,et al.  Chemical abundances and mixing in stars in the milky way and its satellites : proceedings of the ESO-Arcetri Workshop held in Castiglione della Pescaia, Italy, 13-17 September, 2004 , 2006 .

[136]  T. Greif,et al.  The first stars: formation of binaries and small multiple systems , 2009, 0908.0712.

[137]  A. Chieffi,et al.  PRESUPERNOVA EVOLUTION AND EXPLOSIVE NUCLEOSYNTHESIS OF ZERO METAL MASSIVE STARS , 2012, 1202.4581.

[138]  Aniruddha R. Thakar,et al.  Erratum: "The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III" (2011, ApJS, 193, 29) , 2011 .

[139]  T. Beers,et al.  CARBON-ENHANCED METAL-POOR STARS IN SDSS/SEGUE. I. CARBON ABUNDANCE ESTIMATION AND FREQUENCY OF CEMP STARS , 2013, 1310.3276.

[140]  R. Klessen,et al.  THE SMALL-SCALE DYNAMO AND NON-IDEAL MAGNETOHYDRODYNAMICS IN PRIMORDIAL STAR FORMATION , 2012, 1204.0658.

[141]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[142]  V. Hill,et al.  First stars XII. Abundances in extremely metal-poor turnoff stars,and comparison with the giants , 2009, 0903.4174.

[143]  P. Hennebelle,et al.  Disk formation during collapse of magnetized protostellar cores , 2009, 0909.3190.

[144]  A. Helmi,et al.  Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy , 2009, 0904.4307.

[145]  A. Loeb,et al.  Rotation Speed of the First Stars , 2010, 1010.0997.

[146]  R. Rich,et al.  A CHEMICAL CONFIRMATION OF THE FAINT BOÖTES II DWARF SPHEROIDAL GALAXY , 2014, 1408.3628.

[147]  P. François,et al.  X-shooter GTO: evidence for a population of extremely metal-poor, alpha-poor stars , 2013, 1309.4913.

[148]  R. Carswell,et al.  The kinetic temperature in a damped Lyman α absorption system in Q2206−199 – an example of the warm neutral medium , 2012, 1202.3012.

[149]  T. Beers,et al.  Extremely Metal-Poor Stars. III. The Lithium-depleted Main-Sequence Turnoff Dwarfs , 1997 .

[150]  Pasadena,et al.  AMPLITUDE FINE STRUCTURE IN THE CEPHEID P-L RELATION. I. AMPLITUDE DISTRIBUTION ACROSS THE RR LYRAE INSTABILITY STRIP MAPPED USING THE ACCESSIBILITY RESTRICTION IMPOSED BY THE HORIZONTAL BRANCH , 2010, 1006.1677.

[151]  R. Klessen,et al.  The effects of accretion luminosity upon fragmentation in the early universe , 2011, 1103.1231.

[152]  C. Chiappini,et al.  Effects of rotation on the evolution of primordial stars , 2008, 0807.0573.

[153]  S. Cassisi,et al.  RR Lyrae variables in Galactic globular clusters: IV. Synthetic HB and RR Lyrae predictions , 2004 .

[154]  G. Chiaki,et al.  Supernova dust formation and the grain growth in the early universe: the critical metallicity for low-mass star formation , 2014, 1410.8384.

[155]  K. Omukai,et al.  Formation of the First Stars by Accretion , 2003 .

[156]  L. F. A. Potsdam,et al.  A primordial star in the heart of the Lion , 2012, 1203.2607.

[157]  T. Greif The numerical frontier of the high-redshift Universe , 2014, 1410.3482.

[158]  P. Bodenheimer,et al.  DARK STARS: A NEW LOOK AT THE FIRST STARS IN THE UNIVERSE , 2009, 0903.3070.

[159]  T. Beers,et al.  Bright Metal-poor Stars from the Hamburg/ESO Survey. I. Selection and Follow-up Observations from 329 Fields , 2006, astro-ph/0608332.

[160]  S. Shectman,et al.  CHEMICAL SIGNATURES OF THE FIRST SUPERNOVAE IN THE SCULPTOR DWARF SPHEROIDAL GALAXY , 2014, 1412.5176.

[161]  E. Kirby,et al.  Detailed abundance analysis of the brightest star in Segue 2, the least massive galaxy , 2014, 1403.2733.

[162]  The early star generations: the dominant effect of rotation on the cno yields , 2005, astro-ph/0510560.

[163]  T. Beers,et al.  CARBON-ENHANCED METAL-POOR STARS: CEMP-s and CEMP-no SUBCLASSES IN THE HALO SYSTEM OF THE MILKY WAY , 2014, 1401.0574.

[164]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[165]  T. Beers,et al.  EXPLORING THE ORIGIN OF LITHIUM, CARBON, STRONTIUM, AND BARIUM WITH FOUR NEW ULTRA METAL-POOR STARS , 2014, 1405.5846.

[166]  Pavel Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[167]  A. Helmi,et al.  Extremely metal-poor stars in classical dwarf spheroidal galaxies: Fornax, Sculptor, and Sextans , 2010, 1008.3721.