Investigation of an adaptively-tuned digital non-Foster approach for impedance matching of electrically-small antennas

An adaptively-tuned digital non-Foster negative capacitor is investigated for impedance matching of electrically-small antennas. Such a digital non-Foster approach has the potential to address difficult design challenges such as stability and tolerance issues in analog non-Foster circuits. Furthermore, the digital non-Foster approach is tunable in software. The required negative capacitance is implemented using an ADC (analog-to-digital converter), DAC (digital-to-analog converter), and signal processing. In addition, the proposed adaptive approach uses the DAC and ADC to excite the antenna with a signal, and determine the antenna capacitance and resistance using impulse response and/or ARMA modeling. The digital non-Foster negative capacitance is then used to cancel the observed undesired reactance of the antenna. Results are given for an RC model of an electrically-short antenna that show effective estimation of impedance, and successful cancellation of most of the undesired reactance.

[1]  S. D. Stearns Stable band-pass non-Foster circuits , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[2]  Andrea Alù,et al.  An invisible acoustic sensor based on parity-time symmetry , 2015, Nature Communications.

[3]  H. A. Wheeler The Radiansphere around a Small Antenna , 1959, Proceedings of the IRE.

[4]  D. Segovia-Vargas,et al.  Stability of Non-Foster Reactive Elements for Use in Active Metamaterials and Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[5]  L. J. Chu,et al.  Physical limitations of omnidirectional antennas , 1948 .

[6]  Nuno Borges Carvalho,et al.  Designing and Testing Software-Defined Radios , 2010, IEEE Microwave Magazine.

[7]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[8]  Sanghoon Kim,et al.  Experimental Validation of Performance Limits and Design Guidelines for Small Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[9]  Ryan S. Adams,et al.  Performance of digital discrete-time implementations of non-Foster circuit elements , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[10]  Roberto G. Rojas,et al.  Non-Foster impedance matching of electrically small antennas , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[11]  Ryan S. Adams,et al.  Stability conditions for a digital discrete-time non-Foster circuit element , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[12]  H.A. Wheeler,et al.  Fundamental Limitations of Small Antennas , 1947, Proceedings of the IRE.

[13]  Ryan S. Adams,et al.  A two-port digital discrete-time non-Foster circuit designed for negative capacitance , 2015, 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS).

[15]  Ning Zhu,et al.  Active Metamaterial-Inspired Broad-Bandwidth, Efficient, Electrically Small Antennas , 2011, IEEE Antennas and Wireless Propagation Letters.

[16]  Vicente González Posadas,et al.  Non-Foster matching network for a small, bladetype monopole in the VHF Band , 2015 .

[17]  Charles R. Phillips,et al.  Digital control system analysis and design , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Daniel F. Sievenpiper,et al.  Noise in non-Foster antenna matching circuits , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[19]  J.T. Aberle,et al.  Two-Port Representation of an Antenna With Application to Non-Foster Matching Networks , 2008, IEEE Transactions on Antennas and Propagation.

[20]  Thomas P. Weldon,et al.  Thevenin forms of digital discrete-time non-Foster RC and RL circuits , 2016, 2016 IEEE International Symposium on Antennas and Propagation (APSURSI).