Moving carbonation fronts in concrete: A moving-sharp-interface approach

Abstract We present a new modeling strategy for predicting the penetration of carbonation reaction fronts in concrete. The approach relies on the assumption that carbonation reaction concentrates macroscopically on an a priori unknown narrow strip (called reaction front) moving into concrete gradually changing its mechanical and chemical properties. We propose a moving-interface model to forecast the maximum penetration depth of gaseous CO2 in the porous concrete matrix. The main questions driving this research are: How fast does the carbonation front move? and How long does it take until the front reaches the reinforcement?. As model output, we determine simultaneously the position of the carbonation front and the profiles of the active concentrations. The model equations are solved using a specially tailored finite element scheme and are validated relying on experimental data from the Ph.D. thesis by D. Bunte Zum Karbonatisierungsbedingten Verlust der Dauerhaftigkeit von Ausenbauteilen aus Stahlbeton, Ph.D. thesis, TU Braunschweig (1994). Our approach should be viewed as an alternative to the standard carbonation models.

[1]  Olivier Coussy,et al.  Propagation Fronts during Calcium Leaching and Chloride Penetration , 2000 .

[2]  Y. F. Houst,et al.  Depth Profiles of Carbonates Formed During Natural Carbonation , 2002 .

[3]  A. Muntean,et al.  ERROR BOUNDS ON SEMI-DISCRETE FINITE ELEMENT APPROXIMATIONS OF A MOVING-BOUNDARY SYSTEM ARISING IN CONCRETE CORROSION , 2007 .

[4]  A. Muntean Continuity with respect to data and parameters of weak solutions to a Stefan-like problem , 2009 .

[5]  Toyohiko Aiki,et al.  Large time behavior of solutions to a moving-interface problem modeling concrete carbonation , 2010 .

[6]  Michael Böhm,et al.  Competition of several carbonation reactions in concrete: a parametric study , 2008 .

[7]  A Stefan problem for a reaction-diffusion system , 1995 .

[8]  Peter J. Ortoleva,et al.  Geochemical Self-Organization , 1994 .

[9]  S. C. Gupta,et al.  The Classical Stefan Problem: Basic Concepts, Modelling and Analysis , 2017 .

[10]  Michael Böhm,et al.  Interface conditions for fast-reaction fronts in wet porous mineral materials: the case of concrete carbonation , 2009 .

[11]  J. N. Dewynne,et al.  Multiple Reaction Fronts in the Oxidation-Reduction of Iron-Rich Uranium Ores , 1993, SIAM J. Appl. Math..

[12]  Michael Böhm,et al.  A moving two-reaction zones model : global existence of solutions , 2006 .

[13]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[14]  A. Muntean,et al.  A two-scale approach to concrete carbonation , 2007 .

[15]  Dieter Bunte Zum karbonatisierungsbedingten Verlust der Dauerhaftigkeit von Außenbauteilen aus Stahlbeton , 1994 .

[16]  Patrick Dangla,et al.  Investigation of the Carbonation Front Shape on Cementitious Materials: Effects of the Chemical Kinetics , 2007 .

[17]  C. Y. Wen,et al.  NONCATALYTIC HETEROGENEOUS SOLID-FLUID REACTION MODELS , 1968 .

[18]  Michael Böhm,et al.  On a moving-boundary system modeling corrosion in sewer pipes , 1998, Appl. Math. Comput..

[19]  Arvo Lannus,et al.  Gas‐Liquid Reactions , 1970 .

[20]  J. Crank Free and moving boundary problems , 1984 .

[21]  Abdulwalab Kharab,et al.  A free boundary value problem for water invading an unsaturated medium , 1987, Computing.

[22]  K. Tuutti Corrosion of steel in concrete , 1982 .

[23]  Adrian Muntean,et al.  Homogenization of a reaction–diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains , 2011 .

[24]  A. Muntean On the interplay between fast reaction and slow diffusion in the concrete carbonation process: a matched-asymptotics approach , 2009 .

[25]  Michael N. Fardis,et al.  A reaction engineering approach to the problem of concrete carbonation , 1989 .

[26]  H. Hilsdorf,et al.  Performance Criteria for concrete Durability , 1995 .

[27]  A. Muntean,et al.  Dynamics of a Moving Reaction Interface in a Concrete Wall , 2006 .

[28]  Renato Vitaliani,et al.  The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials , 1993 .

[29]  Koenraad Van Balen,et al.  Modelling lime mortar carbonation , 1994 .

[30]  Alexander Steffens,et al.  Modeling carbonation for corrosion risk prediction of concrete structures , 2002 .

[31]  K. Sisomphon,et al.  Carbonation rates of concretes containing high volume of pozzolanic materials , 2007 .

[32]  S. Whitaker,et al.  Jump conditions at non-uniform boundaries: the catalytic surface , 2000 .

[33]  Renato Vitaliani,et al.  2 — D model for carbonation and moisture/heat flow in porous materials , 1995 .

[34]  M. Gurtin Thermomechanics of Evolving Phase Boundaries in the Plane , 1993 .

[35]  Alain Sellier,et al.  COUPLED MOISTURE-CARBON DIOXIDE-CALCIUM TRANSFER MODEL FOR CARBONATION OF CONCRETE , 2004 .

[36]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[37]  Michael Böhm,et al.  Dynamics of the internal reaction layer arising during carbonation of concrete , 2007 .

[38]  A. D. Solomon,et al.  Mathematical Modeling Of Melting And Freezing Processes , 1992 .

[39]  T. Aiki,et al.  Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures , 2009 .