Two-variable fibrations, factorisation systems and $\infty$-categories of spans

. We prove a universal property for ∞ -categories of spans in the generality of Barwick’s adequate triples, explicitly describe the cocartesian fibration corresponding to the span functor, and show that the latter restricts to a self-equivalence on the class of orthogonal adequate triples, which we introduce for this purpose. As applications of the machinery we develop we give a quick proof of Barwick’s unfurling theorem, show that an orthogonal factorisation system arises from a cartesian fibration if and only if it forms an adequate triple (generalising work of Lanari), extend the description of dual (co)cartesian fibrations by Barwick, Glasman and Nardin to two-variable fibrations, explicitly describe parametrised adjoints (extending work of Torii), identify the orthofibration classifying the mapping category functor of an ( ∞ , 2)-category (building on work of Abell´an Garc´ıa and Stern), formally identify the unstraightenings of the identity functor on the ∞ -category of ∞ categories with the (op)lax under-categories of a point, and deduce a certain naturality property of the Yoneda embedding (answering a question of Clausen).

[1]  Dominic R. Verity,et al.  Elements of ∞-Category Theory , 2022 .

[2]  J. Steinebrunner Locally (co)Cartesian fibrations as realisation fibrations and the classifying space of cospans , 2019, Journal of the London Mathematical Society.

[3]  R. Haugseng On lax transformations, adjunctions, and monads in (∞,2)-categories , 2020, Higher Structures.

[4]  Edoardo Lanari Cartesian factorization systems and pointed cartesian fibrations of ∞-categories , 2021, Higher Structures.

[5]  Yonatan Harpaz,et al.  Gray tensor products and Lax functors of (∞,2)-categories , 2021 .

[6]  Tomer M. Schlank,et al.  Higher Semiadditive Algebraic K-Theory and Redshift , 2021, 2111.10203.

[7]  Dustin Clausen,et al.  The reductive Borel-Serre compactification as a model for unstable algebraic K-theory , 2021, 2108.01924.

[8]  F. Hebestreit,et al.  Stable moduli spaces of hermitian forms , 2021, 2103.13911.

[9]  J. Nuiten,et al.  Orthofibrations and monoidal adjunctions. , 2020 .

[10]  R. Haugseng,et al.  Lax monoidal adjunctions, two-variable fibrations and the calculus of mates , 2020, 2011.08808.

[11]  R. Haugseng,et al.  On distributivity in higher algebra I: the universal property of bispans , 2020, Compositio Mathematica.

[12]  Walker H. Stern,et al.  Enhanced twisted arrow categories , 2020, 2009.11969.

[13]  V. Hinich Yoneda lemma for enriched ∞-categories , 2020, Advances in Mathematics.

[14]  David Ayala,et al.  Fibrations of ∞-categories , 2020, Higher Structures.

[15]  Yonatan Harpaz Ambidexterity and the universality of finite spans , 2017, Proceedings of the London Mathematical Society.

[16]  T. Torii On Quasi-Categories of Comodules and Landweber Exactness , 2015, Bousfield Classes and Ohkawa's Theorem.

[17]  George Raptis,et al.  A cobordism model for Waldhausen K ‐theory , 2017, J. Lond. Math. Soc..

[18]  Aaron Mazel-Gee The universality of the Rezk nerve , 2015, Algebraic & Geometric Topology.

[19]  D. Stevenson Model Structures for Correspondences and Bifibrations , 2018, 1807.08226.

[20]  W. Steimle An additivity theorem for cobordism categories , 2018, 1805.04100.

[21]  David Gepner,et al.  Lax colimits and free fibrations in ∞-categories , 2017 .

[22]  Denis Nardin Parametrized higher category theory and higher algebra: Expos\'e IV -- Stability with respect to an orbital $\infty$-category , 2016, 1608.07704.

[23]  D. Kaledin Spectral Mackey functors and equivariant algebraic K-Theory ( I ) , 2016 .

[24]  C. Barwick,et al.  Dualizing cartesian and cocartesian fibrations , 2014, 1409.2165.

[25]  R. Haugseng Iterated spans and classical topological field theories , 2014, 1409.0837.

[26]  C. Barwick On the Q construction for exact quasicategories , 2013, 1301.4725.

[27]  C. Barwick,et al.  On the Unicity of the Homotopy Theory of Higher Categories , 2011, 1112.0040.

[28]  James Cranch Algebraic theories, span diagrams and commutative monoids in homotopy theory , 2011, 1109.1598.

[29]  M. Schlichting Hermitian K -theory of exact categories , 2010 .

[30]  A. Blumberg,et al.  A universal characterization of higher algebraic K-theory , 2010, 1001.2282.

[31]  A. Joyal,et al.  Quasi-categories vs Segal spaces , 2006, math/0607820.

[32]  A. Kuku,et al.  Higher Algebraic K-Theory , 2006 .

[33]  Charles Rezk,et al.  A model for the homotopy theory of homotopy theory , 1998, math/9811037.