A Reinforcement Learning Framework for Multi-source Adaptive Streaming

[1]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[2]  Federico Chiariotti,et al.  D-DASH: A Deep Q-Learning Framework for DASH Video Streaming , 2017, IEEE Transactions on Cognitive Communications and Networking.

[3]  Don Towsley,et al.  MSPlayer: Multi-Source and Multi-Path Video Streaming , 2016, IEEE Journal on Selected Areas in Communications.

[4]  Hongzi Mao,et al.  Neural Adaptive Video Streaming with Pensieve , 2017, SIGCOMM.

[5]  Iraj Sodagar,et al.  The MPEG-DASH Standard for Multimedia Streaming Over the Internet , 2011, IEEE MultiMedia.

[6]  Feng Qian,et al.  MP-H2: A Client-only Multipath Solution for HTTP/2 , 2019, MobiCom.

[7]  Christian Timmerer,et al.  Dynamic adaptive streaming over HTTP dataset , 2012, MMSys '12.

[8]  Ramesh K. Sitaraman,et al.  BOLA: Near-Optimal Bitrate Adaptation for Online Videos , 2016, IEEE/ACM Transactions on Networking.

[9]  Thomas Stockhammer,et al.  Dynamic adaptive streaming over HTTP --: standards and design principles , 2011, MMSys.

[10]  Wei Tsang Ooi,et al.  QUETRA: A Queuing Theory Approach to DASH Rate Adaptation , 2017, ACM Multimedia.

[11]  Filip De Turck,et al.  Design and optimisation of a (FA)Q-learning-based HTTP adaptive streaming client , 2014, Connect. Sci..

[12]  Wei Tsang Ooi,et al.  DQ-DASH , 2020, ACM Trans. Multim. Comput. Commun. Appl..