Measuring and Understanding Contact Area at the Nanoscale: A Review

The size of the mechanical contact between nanoscale bodies that are pressed together under load has implications for adhesion, friction, and electrical and thermal transport at small scales. Yet, because the contact is buried between the two bodies, it is challenging to accurately measure the true contact area and to understand its dependence on load and material properties. Recent advancements in both experimental techniques and simulation methodologies have provided unprecedented insights into nanoscale contacts. This review provides a detailed look at the current understanding of nanocontacts. Experimental methods for determining contact area are discussed, including direct measurements using in situ electron microscopy, as well as indirect methods based on measurements of contact resistance, contact stiffness, lateral forces, and topography. Simulation techniques are also discussed, including the types of nanocontact modeling that has been performed and the various methods for extracting the magnitude of the contact area from a simulation. To describe and predict contact area, three different theories of nanoscale contact are reviewed: single-contact continuum mechanics; multi-contact continuum mechanics; and atomistic accounting. Representative results from nanoscale experimental and simulation investigations are presented in the context of these theories. Finally, the critical challenges are described, as well as the opportunities on the path to establishing a fundamental and actionable understanding of what it means to be “in contact” at the nanoscale.

[1]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Eun Kyung Lee,et al.  Full-colour quantum dot displays fabricated by transfer printing , 2011 .

[4]  Bharat Bhushan,et al.  Generalized fractal analysis and its applications to engineering surfaces , 1995 .

[5]  Enrico Savio,et al.  Acoustic Scanning Probe Microscopy , 2013 .

[6]  R. D. Mindlin Elastic Spheres in Contact Under Varying Oblique Forces , 1953 .

[7]  Yalin Dong,et al.  Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. , 2015, Physical review letters.

[8]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[9]  A. Majumdar SCANNING THERMAL MICROSCOPY , 1999, Annual Review of Materials Science.

[10]  I. N. Sneddon Boussinesq's problem for a flat-ended cylinder , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  M. Stevens,et al.  Friction between Alkylsilane Monolayers: Molecular Simulation of Ordered Monolayers , 2002 .

[12]  Robert W. Carpick,et al.  Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope , 1996 .

[13]  B N J Persson,et al.  Influence of surface roughness on adhesion between elastic bodies. , 2005, Physical review letters.

[14]  Mathias Göken,et al.  Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy , 2002 .

[15]  Shengfeng Cheng,et al.  Defining Contact at the Atomic Scale , 2010, 1004.1202.

[16]  Owen Y Loh,et al.  Nanoelectromechanical contact switches. , 2012, Nature nanotechnology.

[17]  Ali Ata,et al.  Adhesion between nanoscale rough surfaces. II. Measurement and comparison with theory , 2000 .

[18]  A. Fischer-Cripps A review of analysis methods for sub-micron indentation testing☆ , 2000 .

[19]  A. Martini,et al.  Nano-scale roughness effects on hysteresis in micro-scale adhesive contact , 2013 .

[20]  M. Caturla,et al.  Modeling contact formation between atomic-sized gold tips via molecular dynamics , 2015, 1501.05743.

[21]  D. F. Ogletree,et al.  Atomic Force Microscopy Study of an Ideally Hard Contact: The Diamond(111)/Tungsten Carbide Interface , 1998 .

[22]  M. Ciavarella,et al.  On the elastic contact of rough surfaces : Numerical experiments and comparisons with recent theories , 2006 .

[23]  John I. McCool,et al.  Extending the Capability of the Greenwood Williamson Microcontact Model , 2000 .

[24]  L. Pastewka,et al.  Atomistic Insights into the Running-in, Lubrication, and Failure of Hydrogenated Diamond-Like Carbon Coatings , 2010 .

[25]  Judith A. Harrison,et al.  Atomic contributions to friction and load for tip-self-assembled monolayers interactions , 2008 .

[26]  Ernst Meyer,et al.  Modulation of contact resonance frequency accompanying atomic-scale stick–slip in friction force microscopy , 2009, Nanotechnology.

[27]  Jean-François Molinari,et al.  Relations between roughness, temperature and dry sliding friction at the atomic scale , 2013 .

[28]  A. Knoll Nanoscale contact-radius determination by spectral analysis of polymer roughness images. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[29]  Santiago D. Solares,et al.  Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy , 2010 .

[30]  U. Schwarz,et al.  Nanotribological studies using nanoparticle manipulation: Principles and application to structural lubricity , 2014 .

[31]  Giuseppe Carbone,et al.  Asperity contact theories: Do they predict linearity between contact area and load? , 2008 .

[32]  R. Carpick,et al.  Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[33]  P. Nayak,et al.  Random Process Model of Rough Surfaces , 1971 .

[34]  J. Pethica,et al.  Inelastic flow processes in nanometre volumes of solids , 1990 .

[35]  John I. McCool,et al.  Non-Gaussian effects in microcontact , 1992 .

[36]  A. W. Bush,et al.  Strongly Anisotropic Rough Surfaces , 1979 .

[37]  B. Mandelbrot,et al.  Fractal character of fracture surfaces of metals , 1984, Nature.

[38]  A. Minor,et al.  Indentation across size scales and disciplines: Recent developments in experimentation and modeling , 2007 .

[39]  Zhenyu Zhang,et al.  On the origin of Amonton’s friction law , 2008 .

[40]  J. Willis,et al.  Hertzian contact of anisotropic bodies , 1966 .

[41]  Kun Zheng,et al.  Electron-beam-assisted superplastic shaping of nanoscale amorphous silica , 2010, Nature communications.

[42]  J. Rajagopalan,et al.  Electron Beam Induced Artifacts During in situ TEM Deformation of Nanostructured Metals , 2015, Scientific Reports.

[43]  J. Dieterich,et al.  IMAGING SURFACE CONTACTS : POWER LAW CONTACT DISTRIBUTIONS AND CONTACT STRESSES IN QUARTZ, CALCITE, GLASS AND ACRYLIC PLASTIC , 1996 .

[44]  T. Jacobs,et al.  Nanoscale wear as a stress-assisted chemical reaction. , 2013, Nature nanotechnology.

[45]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[46]  J. Molinari,et al.  From infinitesimal to full contact between rough surfaces: Evolution of the contact area , 2014, 1401.3800.

[47]  Andreas A. Polycarpou,et al.  Reducing the effects of adhesion and friction in microelectromechanical systems "MEMSs… through surface roughening: Comparison between theory and experiments , 2005 .

[48]  G. Betz,et al.  Applicability of Macroscopic Wear and Friction Laws on the Atomic Length Scale. , 2015, Physical review letters.

[49]  B. Lorenz,et al.  Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties , 2009, The European physical journal. E, Soft matter.

[50]  D. Whitehouse,et al.  The properties of random surfaces of significance in their contact , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[51]  R. Carpick,et al.  A General Equation for Fitting Contact Area and Friction vs Load Measurements. , 1999, Journal of colloid and interface science.

[52]  B. Persson,et al.  Adhesion between elastic solids with randomly rough surfaces: Comparison of analytical theory with molecular-dynamics simulations , 2011, 1112.5275.

[53]  Ali Ata,et al.  Adhesion between nanoscale rough surfaces. I. Role of asperity geometry , 2000 .

[54]  Donald W. Brenner,et al.  Three decades of many-body potentials in materials research , 2012 .

[55]  George M. Pharr,et al.  On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation , 1992 .

[56]  T. Jacobs,et al.  Measurement of the Length and Strength of Adhesive Interactions in a Nanoscale Silicon–Diamond Interface , 2015 .

[57]  Udo D. Schwarz,et al.  Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds , 1997 .

[58]  D. Tabor Surface Forces and Surface Interactions , 1977 .

[59]  V. Popov Contact Mechanics and Friction , 2010 .

[60]  D. F. Ogletree,et al.  The role of contaminants in the variation of adhesion, friction, and electrical conduction properties of carbide-coated scanning probe tips and Pt(111) in ultrahigh vacuum , 2004 .

[61]  Till Junge,et al.  Quantitative characterization of surface topography using spectral analysis , 2016 .

[62]  J. Greenwood A unified theory of surface roughness , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[63]  Binquan Luan,et al.  Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  George Finlay Simmons,et al.  Calculus With Analytic Geometry , 1985 .

[65]  B. Bhushan,et al.  Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear , 1996 .

[66]  R. Wiesendanger,et al.  QUANTITATIVE ANALYSIS OF THE FRICTIONAL PROPERTIES OF SOLID MATERIALS AT LOW LOADS. II. MICA AND GERMANIUM SULFIDE , 1997 .

[67]  G. Carbone,et al.  The influence of the statistical properties of self-affine surfaces in elastic contacts: A numerical investigation , 2012 .

[68]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[69]  Xiaoli Hu,et al.  Atomistic simulation of the effect of roughness on nanoscale wear , 2015 .

[70]  M. Müser,et al.  Contact mechanics of real vs. randomly rough surfaces: A Green's function molecular dynamics study , 2007 .

[71]  E. Reedy Thin-coating contact mechanics with adhesion , 2006 .

[72]  E. Kramer,et al.  The deformation and adhesion of randomly rough and patterned surfaces. , 2006, The journal of physical chemistry. B.

[73]  S. Solhjoo,et al.  Definition and detection of contact in atomistic simulations , 2015 .

[74]  G. Carbone,et al.  Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories , 2009, The European physical journal. E, Soft matter.

[75]  A. Knoll,et al.  Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes , 2010, Science.

[76]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[77]  Anthony B. Kos,et al.  Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods , 2005 .

[78]  B. N. J. Perssona The effect of surface roughness on the adhesion of elastic solids , 2001 .

[79]  Xiaoli Hu,et al.  Amorphization-assisted nanoscale wear during the running-in process , 2017 .

[80]  R. D. Gibson,et al.  The elastic contact of a rough surface , 1975 .

[81]  L. Marks,et al.  Liquid-like tribology of gold studied by in situ TEM , 2008 .

[82]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids , 1976 .

[83]  Marina Ruths,et al.  Frictional Forces and Amontons' Law: From the Molecular to the Macroscopic Scale , 2004 .

[84]  K. Turner,et al.  Adhesion of nanoscale asperities with power-law profiles , 2013 .

[85]  B. Luan,et al.  Contact and friction of nanoasperities: effects of adsorbed monolayers. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Hertz On the Contact of Elastic Solids , 1882 .

[87]  D. F. Ogletree,et al.  Variation of the Interfacial Shear Strength and Adhesion of a Nanometer-Sized Contact , 1996 .

[88]  Sergei V. Kalinin,et al.  Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces , 2002 .

[89]  D. Ugarte,et al.  Signature of atomic structure in the quantum conductance of gold nanowires. , 2000, Physical review letters.

[90]  B. Bhushan,et al.  Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces , 1990 .

[91]  J. M. van Ruitenbeek,et al.  Formation and manipulation of a metallic wire of single gold atoms , 1998, Nature.

[92]  T. Jacobs,et al.  A Technique for the Experimental Determination of the Length and Strength of Adhesive Interactions Between Effectively Rigid Materials , 2015, Tribology Letters.

[93]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[94]  B. Persson,et al.  Adhesion between elastic bodies with randomly rough surfaces. , 2002, Physical review letters.

[95]  Roman Pohrt,et al.  Normal contact stiffness of elastic solids with fractal rough surfaces. , 2012, Physical review letters.

[96]  Yifei Mo,et al.  Roughness picture of friction in dry nanoscale contacts , 2010 .

[97]  U. Dürig,et al.  Conduction and mechanical properties of atomic scale gold contacts , 1999 .

[98]  Sergei V. Kalinin,et al.  Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level , 2012 .

[99]  David B. Williams,et al.  Transmission Electron Microscopy: A Textbook for Materials Science , 1996 .

[100]  S. Buldyrev,et al.  Asperity contacts at the nanoscale: Comparison of Ru and Au , 2008, 0807.0613.

[101]  C. Frisbie,et al.  Conducting Probe Atomic Force Microscopy: A Characterization Tool for Molecular Electronics , 1999 .

[102]  B. Persson Theory of rubber friction and contact mechanics , 2001 .

[103]  Francesca Tavazza,et al.  Considerations for choosing and using force fields and interatomic potentials in materials science and engineering , 2013 .

[104]  David Tabor,et al.  The effect of surface roughness on the adhesion of elastic solids , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[105]  Michele Ciavarella,et al.  A “re-vitalized” Greenwood and Williamson model of elastic contact between fractal surfaces , 2006 .

[106]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[107]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[108]  B. Rodriguez,et al.  Applications of piezoresponse force microscopy in materials research: from inorganic ferroelectrics to biopiezoelectrics and beyond , 2016 .

[109]  M. Longuet-Higgins The statistical analysis of a random, moving surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[110]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[111]  N. Spencer,et al.  Controlling adhesion force by means of nanoscale surface roughness. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[112]  Xiaoli Hu,et al.  Matching Atomistic Simulations and In Situ Experiments to Investigate the Mechanics of Nanoscale Contact , 2019, Tribology Letters.

[113]  H. Bender,et al.  Evaluation of the electrical contact area in contact-mode scanning probe microscopy , 2015 .

[114]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[115]  K. Turner,et al.  Correcting for Tip Geometry Effects in Molecular Simulations of Single-Asperity Contact , 2017, Tribology Letters.

[116]  Kevin T. Turner,et al.  Measurement of the strength and range of adhesion using atomic force microscopy , 2016 .

[117]  J. Turner,et al.  Contact on a transversely isotropic half-space, or between two transversely isotropic bodies , 1980 .

[118]  K. Hirakawa,et al.  Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope , 2008, 0812.0048.

[119]  D. Srolovitz,et al.  Molecular dynamics simulation of single asperity contact , 2004 .

[120]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[121]  Kevin Kendall,et al.  Molecular dynamics simulations of (001) MgO surface contacts: effects of tip structures and surface matching , 2003 .

[122]  D. Maugis Contact, Adhesion and Rupture of Elastic Solids , 2000 .

[123]  B. Persson Contact mechanics for randomly rough surfaces , 2006, cond-mat/0603807.

[124]  E. Riedo,et al.  Advanced scanning probe lithography. , 2014, Nature nanotechnology.

[125]  D. Johannsmann,et al.  Partial slip in mesoscale contacts: dependence on contact size. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[126]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[127]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[128]  Mark A. Lantz,et al.  Simultaneous force and conduction measurements in atomic force microscopy , 1997 .

[129]  J. Molinari,et al.  Finite-element analysis of contact between elastic self-affine surfaces. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[130]  K. Kremer,et al.  Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[131]  Giuseppe Carbone,et al.  Average separation between a rough surface and a rubber block: Comparison between theories and experiments , 2010 .

[132]  Kevin T. Turner,et al.  Friction laws at the nanoscale , 2009, Nature.

[133]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[134]  E. Meyer,et al.  Atomic-scale stick-slip processes on Cu(111) , 1999 .

[135]  G. Vorlaufer,et al.  Molecular dynamics simulations of mixed lubrication with smooth particle post-processing , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[136]  Vieira,et al.  Atomic-sized metallic contacts: Mechanical properties and electronic transport. , 1996, Physical review letters.

[137]  M. Varenberg,et al.  A novel test rig for in situ and real time optical measurement of the contact area evolution during pre-sliding of a spherical contact , 2006 .

[138]  Izhak Etsion,et al.  A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces , 2003 .

[139]  Hubert M. Pollock,et al.  Interpretation issues in force microscopy , 1991 .

[140]  Danny Perez,et al.  Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. , 2011, Physical review letters.

[141]  B. Luan,et al.  The breakdown of continuum models for mechanical contacts , 2005, Nature.

[142]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[143]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[144]  D. Srolovitz,et al.  Mechanism for material transfer in asperity contact , 2008 .

[145]  B. Persson,et al.  Capillary adhesion between elastic solids with randomly rough surfaces , 2008, 0805.0684.

[146]  Gabriel M. Rebeiz,et al.  RF MEMS switches and switch circuits , 2001 .

[147]  R. Geiss,et al.  Contact mechanics and tip shape in AFM-based nanomechanical measurements. , 2006, Ultramicroscopy.

[148]  E. Reedy Contact mechanics for coated spheres that includes the transition from weak to strong adhesion , 2007 .

[149]  A. Majumdar,et al.  Fractal characterization and simulation of rough surfaces , 1990 .

[150]  Itzhak Green,et al.  On the Modeling of Elastic Contact between Rough Surfaces , 2011 .

[151]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[152]  J. Archard Contact and Rubbing of Flat Surfaces , 1953 .

[153]  Zhijun Zheng,et al.  Using the Dugdale approximation to match a specific interaction in the adhesive contact of elastic objects. , 2007, Journal of colloid and interface science.

[154]  J. Molinari,et al.  The effect of loading on surface roughness at the atomistic level , 2012 .

[155]  M A Lantz,et al.  Quantized thermal transport across contacts of rough surfaces. , 2013, Nature materials.

[156]  S. Swanson Hertzian contact of orthotropic materials , 2004 .

[157]  R. Nemanich,et al.  Temperature Dependence of Single-Asperity Diamond−Diamond Friction Elucidated Using AFM and MD Simulations , 2008 .

[158]  Clayton C. Williams,et al.  Sub-10 nm lateral spatial resolution in scanning capacitance microscopy achieved with solid platinum probes , 2004 .

[159]  Mohammed A. Zikry,et al.  Nanoindentation of model diamond nanocomposites: Hierarchical molecular dynamics and finite-element simulations , 2009 .

[160]  Qunyang Li,et al.  The evolving quality of frictional contact with graphene , 2016, Nature.

[161]  W. Sawyer,et al.  Optical In Situ Micro Tribometer for Analysis of Real Contact Area for Contact Mechanics, Adhesion, and Sliding Experiments , 2011, Tribology Letters.

[162]  D. Maugis On the contact and adhesion of rough surfaces , 1996 .

[163]  B. Persson,et al.  Finite-size scaling in the interfacial stiffness of rough elastic contacts. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[164]  Singh,et al.  Adhesion between Nanoscale Rough Surfaces. , 2000, Journal of colloid and interface science.

[165]  Martin H. Müser,et al.  On the Contact Area and Mean Gap of Rough, Elastic Contacts: Dimensional Analysis, Numerical Corrections, and Reference Data , 2013, Tribology Letters.

[166]  B. Lincoln Elastic Deformation and the Laws of Friction , 1953, Nature.

[167]  A. Voter,et al.  Low-Speed Atomistic Simulation of Stick–Slip Friction using Parallel Replica Dynamics , 2009 .

[168]  J. Greenwood,et al.  The Contact of Two Nominally Flat Rough Surfaces , 1970 .

[169]  Joseph A. Turner,et al.  Atomic force acoustic microscopy methods to determine thin-film elastic properties , 2003 .

[170]  B. Persson Elastoplastic contact between randomly rough surfaces. , 2001, Physical review letters.

[171]  Uzi Landman,et al.  Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture , 1990, Science.

[172]  M. Dunn,et al.  The role of van der Waals forces in adhesion of micromachined surfaces , 2005, Nature materials.

[173]  K. Turner,et al.  The Effect of Atomic-Scale Roughness on the Adhesion of Nanoscale Asperities: A Combined Simulation and Experimental Investigation , 2013, Tribology Letters.

[174]  K. Turner,et al.  Simulated adhesion between realistic hydrocarbon materials: effects of composition, roughness, and contact point. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[175]  Jan M. van Ruitenbeek,et al.  Quantum properties of atomic-sized conductors , 2002, cond-mat/0208239.

[176]  Eajf Frank Peters,et al.  Elimination of time step effects in DPD , 2004 .

[177]  D. Alsem,et al.  In situ electrical testing of device-relevant nanocontacts in the transmission electron microscope , 2016, Microscopy and Microanalysis.

[178]  A. M. Walker Statistical Analysis of a Random, Moving Surface , 1957, Nature.

[179]  R. Bennewitz,et al.  Impact of van der Waals interactions on single asperity friction. , 2013, Physical review letters.

[180]  Ashlie Martini,et al.  Molecular dynamics simulation of atomic friction: A review and guide , 2013 .

[181]  Amelio,et al.  Quantitative determination of contact stiffness using atomic force acoustic microscopy , 2000, Ultrasonics.

[182]  F. P. Bowden,et al.  The Area of Contact between Stationary and between Moving Surfaces , 1939 .

[183]  D. F. Ogletree,et al.  Observation of proportionality between friction and contact area at the nanometer scale , 1999 .

[184]  S Prades,et al.  Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics. , 2006, Physical review letters.

[185]  Paul G. Slade,et al.  Electrical contacts : principles and applications , 1999 .

[186]  Mark O. Robbins,et al.  Contact between rough surfaces and a criterion for macroscopic adhesion , 2013, Proceedings of the National Academy of Sciences.

[187]  G. Zhang,et al.  Atomistic insights into the loading – Unloading of an adhesive contact: A rigid sphere indenting a copper substrate , 2015 .

[188]  A. Martini,et al.  Atomistic description of coupled thermal-mechanical stresses on a gold/HOPG nanocontact , 2017 .

[189]  M. Müser,et al.  Simple microscopic theory of Amontons's laws for static friction. , 2001, Physical review letters.

[190]  Sutton,et al.  Force and conductance jumps in atomic-scale metallic contacts. , 1996, Physical Review B (Condensed Matter).

[191]  G. E. Wabiszewski,et al.  Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide. , 2016, The Review of scientific instruments.

[192]  G. Grest,et al.  Simulations of nanotribology with realistic probe tip models. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[193]  A. Volokitin,et al.  On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[194]  L. Ponson,et al.  Two-dimensional scaling properties of experimental fracture surfaces. , 2006, Physical review letters.

[195]  P. Miranda,et al.  Master curves for Hertzian indentation on coating/substrate systems , 2004 .

[196]  Y. Enomoto,et al.  Simultaneous Observation of Millisecond Dynamics in Atomistic Structure, Force and Conductance on the Basis of Transmission Electron Microscopy , 2001 .

[197]  Robert W. Carpick,et al.  Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy , 1997 .

[198]  J Katainen,et al.  Adhesion as an interplay between particle size and surface roughness. , 2006, Journal of colloid and interface science.

[199]  Tristan Sharp,et al.  Stiffness of contacts between rough surfaces. , 2010, Physical review letters.

[200]  Yukihito Kondo,et al.  Suspended Gold Nanowires: Ballistic Transport of Electrons , 2001 .

[201]  H. Fujita,et al.  Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime. , 2015, Nano letters.

[202]  Danny Perez,et al.  Rate Theory Description of Atomic Stick-slip Friction , 2010 .

[203]  Peter Gumbsch,et al.  Anisotropic mechanical amorphization drives wear in diamond. , 2011, Nature materials.

[204]  Robert W. Carpick,et al.  Accounting for the JKR–DMT transition in adhesion and friction measurements with atomic force microscopy , 2005 .

[205]  L. Pastewka,et al.  Contact area of rough spheres: Large scale simulations and simple scaling laws , 2015, 1508.02154.

[206]  C. Hellberg,et al.  Supplemental Information for Nanoscale Control of an Interfacial Metal-Insulator Transition at Room Temperature , 2008 .

[207]  J. Molinari,et al.  The Contact of Elastic Regular Wavy Surfaces Revisited , 2014, Tribology Letters.

[208]  Nobuo Tanaka,et al.  Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces , 1997 .

[209]  B N J Persson,et al.  Friction and universal contact area law for randomly rough viscoelastic contacts , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[210]  D. Bogy,et al.  An Elastic-Plastic Model for the Contact of Rough Surfaces , 1987 .

[211]  G. Matei,et al.  Dynamic solidification in nanoconfined water films. , 2010, Physical review letters.

[212]  T. Kizuka Atomic Process of Point Contact in Gold Studied by Time-Resolved High-Resolution Transmission Electron Microscopy , 1998 .