A chemical model for evaporites on early Mars: Possible sedimentary tracers of the early climate and implications for exploration

Martian geomorphology seems to indicate extensive hydrological activity during the Noachian era. Liquid water at the surface would require a large greenhouse effect that is widely hypothesized to have been caused by a high partial pressure of atmospheric carbon dioxide, PCO2. A sedimentation model driven by sequential evaporation is used to calculate the evaporite mineral sequence in a closed basin lake subject to high PCO2. The initial fluid is derived from weathered igneous rock similar to Martian meteorite basalts. Siderite (FeCO3) is always the first major carbonate to precipitate. Thus siderite is predicted to be an important fades component in ancient Martian sediments along with silica, which is also an early precipitate. These would form varves in lakes that undergo cycles of evaporation and water recharge. After silica and siderite, the sequence is magnesian calcite, nearly pure hydromagnesite, and gypsum, followed by highly soluble salts like NaCl. The presence of siderite sediments generally requires an atmospheric PCO2 level in excess of ∼0.1 bar, otherwise iron silicates (such as greenalite) would form. This may be used in exploration as an observational test on the past atmospheric composition of Mars, subject to consideration of the depositional environment. At PCO2 of approximately several bar, gypsum precipitation could occur before calcite upon evaporation if the initial SO42−:Ca2+ ratio is high and there is no water recharge. The predicted carbonate sequence upon evaporation is generally consistent with recent hypotheses suggesting traces of evaporite carbonates in some Martian meteorites. Several mechanisms destroy or obscure carbonates at the Martian surface. Consequently, in situ analysis of the interior of ejecta from recent impact craters lying within sedimentary basins may offer the most practical approach to future exploration of ancient carbonate sediments.

[1]  J. Kasting,et al.  Warming Early Earth and Mars , 1997, Science.

[2]  R. Garrels,et al.  Origin of the Chemical Compositions of Some Springs and Lakes , 1967 .

[3]  H Y McSween,et al.  The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. , 1997, Science.

[4]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[5]  F. Mackenzie,et al.  A THERMODYNAMIC MODEL FOR WATER COLUMN PRECIPITATION OF SIDERITE IN THE PLIO-PLEISTOCENE BLACK SEA , 1996 .

[6]  M. Carr The Martian drainage system and the origin of valley networks and fretted channels , 1995 .

[7]  C P McKay,et al.  A coupled soil-atmosphere model of H2O2 on Mars. , 1994, Icarus.

[8]  W. Dreybrodt,et al.  HYDRODYNAMIC CONTROL OF INORGANIC CALCITE PRECIPITATION IN HUANGLONG RAVINE, CHINA : FIELD MEASUREMENTS AND THEORETICAL PREDICTION OF DEPOSITION RATES , 1995 .

[9]  A. Herczeg,et al.  A chemical model for the evolution of Australian sodium chloride lake brines , 1991 .

[10]  Y. Yung,et al.  CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation. , 1997, Icarus.

[11]  L. Hardie On the Significance of Evaporites , 1991 .

[12]  M B Madsen,et al.  Magnetic properties experiments on the Mars Pathfinder lander: preliminary results. , 1997, Science.

[13]  J. Gooding Soil mineralogy and chemistry on Mars - Possible clues from salts and clays in SNC meteorites , 1992 .

[14]  A. Zent,et al.  On the thickness of the oxidized layer of the Martian regolith. , 1998, Journal of geophysical research.

[15]  R. Haberle Early Mars Climate Models , 1998 .

[16]  R. Arvidson,et al.  Differential aeolian redistribution rates on Mars , 1979, Nature.

[17]  A. K. Baird,et al.  On the original igneous source of Martian fines , 1981 .

[18]  Wendy M. Calvin,et al.  Could Mars be dark and altered? , 1998 .

[19]  A. McEwen,et al.  Voluminous volcanism on early Mars revealed in Valles Marineris , 1999, Nature.

[20]  V. R. Baker,et al.  Ancient oceans, ice sheets and the hydrological cycle on Mars , 1991, Nature.

[21]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[22]  E. C. Beutner Slaty cleavage and related strain in Martinsburg Slate, Delaware Water Gap, New Jersey , 1978 .

[23]  H. Wänke,et al.  Chemistry and accretion history of Mars , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[24]  M. Carr Recharge of the early atmosphere of Mars by impact-induced release of CO2 , 1989 .

[25]  R. Krupp,et al.  The early Precambrian atmosphere and hydrosphere; thermodynamic constraints from mineral deposits , 1994 .

[26]  F. Mackenzie,et al.  Evolution of sedimentary rocks , 1971 .

[27]  E. Gibson,et al.  Low-Temperature Carbonate Concretions in the Martian Meteorite ALH84001: Evidence from Stable Isotopes and Mineralogy , 1997, Science.

[28]  T. Parker,et al.  Transitional morphology in West Deuteronilus Mensae, Mars: Implications for modification of the lowland/upland boundary , 1989 .

[29]  R. Symonds,et al.  The significance of siderite in the sediments from Lake Nyos, Cameroon , 1989 .

[30]  I︠u︡. P. Melʹnik Precambrian banded iron-formations: Physicochemical conditions of formation , 1982 .

[31]  W. L. Davis,et al.  Duration of liquid water habitats on early Mars. , 1991, Icarus.

[32]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[33]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[34]  Kenneth S. Edgett,et al.  Water on early Mars: Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani , 1997 .

[35]  A. Banin,et al.  Acidic volatiles and the Mars soil , 1997 .

[36]  Search for life on Mars. , 1998, Uchu Seibutsu Kagaku.

[37]  J. Schott,et al.  Determination of the solubility products of sodium carbonate minerals and an application to trona deposition in Lake Magadi (Kenya) , 1984 .

[38]  V. Gulick,et al.  Episodic ocean-induced CO2 greenhouse on Mars: implications for fluvial valley formation. , 1997, Icarus.

[39]  David L. Parkhurst,et al.  Revised chemical equilibrium data for major water-mineral reactions and their limitations , 1990 .

[40]  R. Garrels,et al.  Calculated aqueous-solution-solid-solution relations in the low-temperature system CaO-MgO-FeO-CO2-H2O , 1992 .

[41]  A. Banin,et al.  Surface chemistry and mineralogy , 1992 .

[42]  H. McSween,et al.  Outgassed Water on Mars: Constraints from Melt Inclusions in SNC Meteorites , 1993, Science.

[43]  P. H. Warren,et al.  Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite. , 1998, Journal of geophysical research.

[44]  H. Hartman,et al.  Oxygenic photosynthesis and the oxidation state of Mars. , 1995, Planetary and space science.

[45]  H. Helgeson,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; IV, Retrieval of rate constants and activation parameters for the hydrolysis of pyroxene, wollastonite, olivine, andalusite, quartz, and nepheline , 1989 .

[46]  R. Garrels,et al.  A chemical model for sea water at 25 degrees C and one atmosphere total pressure , 1962 .

[47]  R. Siever The silica cycle in the Precambrian , 1992 .

[48]  R. Burns Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars , 1993 .

[49]  H. Wänke,et al.  Experimental simulations of the photodecomposition of carbonates and sulphates on Mars , 1996, Nature.

[50]  H. D. Holland The chemistry of the atmosphere and oceans , 1978 .

[51]  C. Chyba,et al.  The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases , 1997, Science.

[52]  S. S. Nedell,et al.  Are there carbonate deposits in the Valles Marineris, Mars? , 1988, Icarus.

[53]  M. Carr Post-Noachian Erosion Rates: Implications for Mars Climate Change , 1992 .

[54]  David C. Pieri,et al.  Coastal Geomorphology of the Martian northern plains , 1993 .

[55]  J. Kasting,et al.  CO2 condensation and the climate of early Mars. , 1991, Icarus.

[56]  M. Settle Formation and deposition of volcanic sulfate aerosols on Mars , 1979 .

[57]  H. Helgeson,et al.  Summary and critique of the thermodynamic properties of rock forming minerals , 1978 .

[58]  F Forget,et al.  Warming early Mars with carbon dioxide clouds that scatter infrared radiation. , 1997, Science.

[59]  A. Treiman The history of Allan Hills 84001 revised: Multiple shock events , 1998, Meteoritics & planetary science.

[60]  M. Garrels Robert,et al.  Genesis of some ground waters from igneous rocks , 1967 .

[61]  R. Baldwin On the relative and absolute ages of seven lunar front face basins: I. From Viscosity Arguments , 1987 .

[62]  B. Clark,et al.  The salts of Mars , 1981 .

[63]  John H. Jones,et al.  The history of Martian volatiles , 1997 .

[64]  D. Hunten Aeronomy of the lower atmosphere of Mars , 1974 .

[65]  H. Eugster,et al.  Chemistry and origin of the brines of Lake Magadi, Kenya , 1970 .

[66]  F. Adams Ionic Concentrations and Activities in Soil Solutions , 1971 .

[67]  Steven W. Squyres,et al.  Ancient aqueous sedimentation on Mars , 1988 .

[68]  Y. Tardy,et al.  Generalized residual alkalinity concept; application to prediction of the chemical evolution of natural waters by evaporation , 1980 .

[69]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[70]  R. Rye,et al.  Atmospheric carbon dioxide concentrations before 2.2 billion years ago , 1995, Nature.

[71]  J. Gooding Chemical weathering on Mars - Thermodynamic stabilities of primary minerals /and their alteration products/ from mafic igneous rocks , 1978 .

[72]  M. Malin,et al.  Groundwater formation of martian valleys , 1999, Nature.

[73]  R. Siever,et al.  Control of carbonate solubility by carbonate complexes , 1961 .

[74]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[75]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[76]  R. Craddock,et al.  Geomorphic evolution of the Martian highlands through ancient fluvial processes , 1993 .

[77]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[78]  R. Garrels A model for the deposition of the microbanded Precambrian iron formations , 1987 .

[79]  Harry Y. McSween,et al.  An Evaporation Model for Formation of Carbonates in the ALH84001 Martian Meteorite , 1998 .

[80]  E. Scott,et al.  Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH84001. , 1999, Journal of geophysical research.

[81]  John W. Morse,et al.  Geochemistry of Sedimentary Carbonates , 1990 .

[82]  Nathalie A. Cabrol,et al.  Limnologic Analysis of Gusev Crater Paleolake, Mars , 1997 .

[83]  H. Eugster,et al.  Behavior of major solutes during closed-basin brine evolution , 1979 .

[84]  A. K. Baird,et al.  Is the Martian lithosphere sulfur rich , 1979 .

[85]  R. Forsythe,et al.  A case for ancient evaporite basins on Mars , 1995 .

[86]  R. Forsythe,et al.  Closed drainage crater basins of the Martian highlands: Constraints on the early Martian hydrologic cycle , 1998 .

[87]  H. Eugster Sodium carbonate‐bicarbonate minerals as indicators of Pco2 , 1966 .

[88]  V. Gulick Mars Surveyor 2001 Landing Site Workshop , 1998 .