Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer.

We have used a novel phase-referenced heterodyne dual-beam low-coherence interferometer to perform what we believe are the first noncontact measurements of surface motion in a nerve bundle during the action potential. Nerve displacements of approximately 5-nm amplitude and approximately 10-ms duration are measured without signal averaging. This interferometer may find general application in measurement of small motion in cells and other weakly scattering samples.