Monosynaptic inputs to new neurons in the dentate gyrus

Adult hippocampal neurogenesis is considered important for cognition. The integration of newborn dentate gyrus granule cells into the existing network is regulated by afferent neuronal activity of unspecified origin. Here we combine rabies virus-mediated retrograde tracing with retroviral labelling of new granule cells (21, 30, 60, 90 days after injection) to selectively identify and quantify their monosynaptic inputs in vivo. Our results show that newborn granule cells receive afferents from intra-hippocampal cells (interneurons, mossy cells, area CA3 and transiently, mature granule cells) and septal cholinergic cells. Input from distal cortex (perirhinal (PRH) and lateral entorhinal cortex (LEC)) is sparse 21 days after injection and increases over time. Patch-clamp recordings support innervation by the LEC rather than from the medial entorhinal cortex. Mice with excitotoxic PRH/LEC lesions exhibit deficits in pattern separation but not in water maze learning. Thus, PRH/LEC input is an important functional component of new dentate gyrus neuron circuitry.

[1]  S. Tonegawa,et al.  Young Dentate Granule Cells Mediate Pattern Separation, whereas Old Granule Cells Facilitate Pattern Completion , 2012, Cell.

[2]  Christoph Schmidt-Hieber,et al.  Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus , 2004, Nature.

[3]  W. Regehr,et al.  Cholinergic Modulation of Excitatory Synaptic Transmission in the CA3 Area of the Hippocampus , 2001, The Journal of Neuroscience.

[4]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[5]  M. Frotscher,et al.  Lesion‐induced mossy fibers to the molecular layer of the rat fascia dentata: Identification of postsynaptic granule cells by the Golgi‐EM technique , 1983, The Journal of comparative neurology.

[6]  F. Gage,et al.  Dopaminergic Modulation of Cortical Inputs during Maturation of Adult-Born Dentate Granule Cells , 2011, The Journal of Neuroscience.

[7]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Claire Halpin,et al.  E unum pluribus: multiple proteins from a self-processing polyprotein. , 2006, Trends in biotechnology.

[9]  Kristina J. Nielsen,et al.  Targeting Single Neuronal Networks for Gene Expression and Cell Labeling In Vivo , 2010, Neuron.

[10]  J. Herbert,et al.  Novel Control by the CA3 Region of the Hippocampus on Neurogenesis in the Dentate Gyrus of the Adult Rat , 2011, PloS one.

[11]  K. Fuxe,et al.  From the Golgi–Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring and volume transmission , 2007, Brain Research Reviews.

[12]  H. Scharfman The CA3 "backprojection" to the dentate gyrus. , 2007, Progress in brain research.

[13]  B. McNaughton,et al.  A comparison of supramammillary and medial septal influences on hippocampal field potentials and single-unit activity. , 1989, Journal of neurophysiology.

[14]  B. Murphy,et al.  Heterogeneous Integration of Adult-Generated Granule Cells into the Epileptic Brain , 2011, The Journal of Neuroscience.

[15]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[16]  J. Lisman Formation of the non‐functional and functional pools of granule cells in the dentate gyrus: role of neurogenesis, LTP and LTD , 2011, The Journal of physiology.

[17]  S. Landis,et al.  Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. , 1974, Brain research.

[18]  L. Schmued,et al.  Fluoro-gold: a new fluorescent retrograde axonal tracer with numerous unique properties , 1986, Brain Research.

[19]  Donald A. Wilson,et al.  Pattern Separation: A Common Function for New Neurons in Hippocampus and Olfactory Bulb , 2011, Neuron.

[20]  C. Barnes,et al.  Age-associated deficits in pattern separation functions of the perirhinal cortex: a cross-species consensus. , 2011, Behavioral neuroscience.

[21]  F. Gage,et al.  Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[23]  G. Ming,et al.  Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions , 2011, Neuron.

[24]  A. Treves,et al.  What is the mammalian dentate gyrus good for? , 2008, Neuroscience.

[25]  Marius Wernig,et al.  Functional Integration of Embryonic Stem Cell-Derived Neurons in Hippocampal Slice Cultures , 2003, The Journal of Neuroscience.

[26]  A. Boattini,et al.  Supplementary Table S2 , 2012 .

[27]  A. F. Schinder,et al.  Neuronal Differentiation in the Adult Hippocampus Recapitulates Embryonic Development , 2005, The Journal of Neuroscience.

[28]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[29]  C. Léránth,et al.  Extrinsic afferent systems to the dentate gyrus. , 2007, Progress in brain research.

[30]  B. L. McNaughton,et al.  Evidence for two physiologically distinct perforant pathways to the fascia dentata , 1980, Brain Research.

[31]  Current source density analysis does not reveal a direct projection from the perirhinal cortex to septal part of hippocampal CA1 or dentate gyrus , 1999, Hippocampus.

[32]  M. Ruberg,et al.  The Alpha2-Adrenoceptor Antagonist Dexefaroxan Enhances Hippocampal Neurogenesis by Increasing the Survival and Differentiation of New Granule Cells , 2006, Neuropsychopharmacology.

[33]  J. Wojtowicz,et al.  Heterogenous properties of dentate granule neurons in the adult rat. , 2000, Journal of neurobiology.

[34]  N. Toni,et al.  Synapse formation on adult‐born hippocampal neurons , 2011, The European journal of neuroscience.

[35]  Rosemary A. Cowell,et al.  Perceptual Functions of Perirhinal Cortex in Rats: Zero-Delay Object Recognition and Simultaneous Oddity Discriminations , 2007, The Journal of Neuroscience.

[36]  T. Freund,et al.  Distribution, ultrastructure, and connectivity of calretinin‐immunoreactive mossy cells of the mouse dentate gyrus , 1997, Hippocampus.

[37]  Hideyuki Okano,et al.  Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb , 2006, Genes to cells : devoted to molecular & cellular mechanisms.

[38]  Rebecca D Burwell,et al.  Corticohippocampal Contributions to Spatial and Contextual Learning , 2004, The Journal of Neuroscience.

[39]  F. Gage,et al.  Functional neurogenesis in the adult hippocampus , 2002, Nature.

[40]  Fred H. Gage,et al.  NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus , 2006, Nature.

[41]  T. Hisatsune,et al.  Cholinergic activation of hippocampal neural stem cells in aged dentate gyrus , 2011, Hippocampus.

[42]  T. Bussey,et al.  Functionally Dissociating Aspects of Event Memory: the Effects of Combined Perirhinal and Postrhinal Cortex Lesions on Object and Place Memory in the Rat , 1999, The Journal of Neuroscience.

[43]  P. E. Gold Acetylcholine modulation of neural systems involved in learning and memory , 2003, Neurobiology of Learning and Memory.

[44]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[45]  H. Farmer A new perspective. , 1988, The Journal of the Florida Medical Association.

[46]  R. Morris,et al.  Place navigation impaired in rats with hippocampal lesions , 1982, Nature.

[47]  R. Clark,et al.  Recognition memory and the medial temporal lobe: a new perspective , 2007, Nature Reviews Neuroscience.

[48]  L. Saksida,et al.  A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation , 2009, Science.

[49]  J. Lisman Relating Hippocampal Circuitry to Function Recall of Memory Sequences by Reciprocal Dentate–CA3 Interactions , 1999, Neuron.

[50]  G. Ugolini,et al.  Advances in viral transneuronal tracing , 2010, Journal of Neuroscience Methods.

[51]  P. Buckmaster,et al.  Axon Sprouting in a Model of Temporal Lobe Epilepsy Creates a Predominantly Excitatory Feedback Circuit , 2002, The Journal of Neuroscience.

[52]  M. Emerman,et al.  Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus , 1994, Journal of virology.

[53]  Lisa M. Saksida,et al.  Running enhances spatial pattern separation in mice , 2010, Proceedings of the National Academy of Sciences.

[54]  György Buzsáki,et al.  Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo , 2007, Brain Structure and Function.

[55]  R. Vertes,et al.  Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  S. Ge,et al.  A Critical Period for Enhanced Synaptic Plasticity in Newly Generated Neurons of the Adult Brain , 2007, Neuron.

[57]  V. Chan‐Palay,et al.  Co-localization of neuropeptide tyrosine and somatostatin immunoreactivity in neurons of individual subfields of the rat hippocampal region , 1987, Neuroscience Letters.

[58]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[59]  G. V. Van Hoesen,et al.  The Parahippocampal Gyrus in Alzheimer's Disease: Clinical and Preclinical Neuroanatomical Correlates , 2000, Annals of the New York Academy of Sciences.

[60]  M. Witter The perforant path: projections from the entorhinal cortex to the dentate gyrus. , 2007, Progress in brain research.

[61]  Fred H. Gage,et al.  Modelling schizophrenia using human induced pluripotent stem cells , 2011, Nature.

[62]  J. Nacher,et al.  Loss of input from the mossy cells blocks maturation of newly generated granule cells , 2007, Hippocampus.

[63]  D. Bilkey,et al.  Current source density analysis of the potential evoked in hippocampus by perirhinal cortex stimulation , 1997, Hippocampus.