Multi-OMICS: a critical technical perspective on integrative lipidomics approaches.

[1]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[2]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[3]  Richard A Gibbs,et al.  Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. , 2004, Genome research.

[4]  Mingui Fu,et al.  A Nuclear Receptor Atlas: 3T3-L1 adipogenesis. , 2005, Molecular endocrinology.

[5]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[6]  Helgi B. Schiöth,et al.  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[7]  J. Caldwell,et al.  Lipid G Protein-coupled Receptor Ligand Identification Using β-Arrestin PathHunter™ Assay , 2009, Journal of Biological Chemistry.

[8]  Tomohisa Hasunuma,et al.  Metabolic turnover analysis by a combination of in vivo 13C-labelling from 13CO2 and metabolic profiling with CE-MS/MS reveals rate-limiting steps of the C3 photosynthetic pathway in Nicotiana tabacum leaves , 2009, Journal of experimental botany.

[9]  Karsten Zengler,et al.  The challenges of integrating multi-omic data sets. , 2010, Nature chemical biology.

[10]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[11]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[12]  M. Haag,et al.  Quantification of Signaling Lipids by Nano-Electrospray Ionization Tandem Mass Spectrometry (Nano-ESI MS/MS) , 2012, Metabolites.

[13]  A. Terzic,et al.  Metabolic plasticity in stem cell homeostasis and differentiation. , 2012, Cell stem cell.

[14]  B. Garcia,et al.  Combining genomic and proteomic approaches for epigenetics research. , 2013, Epigenomics.

[15]  Juan Antonio Vizcaíno,et al.  Shorthand notation for lipid structures derived from mass spectrometry , 2013, Journal of Lipid Research.

[16]  T. Bonaldi,et al.  The Proteomic Investigation of Chromatin Functional Domains Reveals Novel Synergisms among Distinct Heterochromatin Components* , 2013, Molecular & Cellular Proteomics.

[17]  Kang Ning,et al.  Assessment of quality control approaches for metagenomic data analysis , 2014, Scientific Reports.

[18]  S. Rozen,et al.  Lipidomics identifies a requirement for peroxisomal function during influenza virus replication[S] , 2014, Journal of Lipid Research.

[19]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of urothelial bladder carcinoma , 2014, Nature.

[20]  William Ritchie,et al.  Genome-wide characterization of the routes to pluripotency , 2014, Nature.

[21]  Robert E Denroche,et al.  SeqControl: process control for DNA sequencing , 2014, Nature Methods.

[22]  A. Frigessi,et al.  Principles and methods of integrative genomic analyses in cancer , 2014, Nature Reviews Cancer.

[23]  Prahlad T. Ram,et al.  A pan-cancer proteomic perspective on The Cancer Genome Atlas , 2014, Nature Communications.

[24]  P. Hu,et al.  Improved sphingolipidomic approach based on ultra-high performance liquid chromatography and multiple mass spectrometries with application to cellular neurotoxicity. , 2014, Analytical chemistry.

[25]  Eystein Oveland,et al.  PeptideShaker enables reanalysis of MS-derived proteomics data sets , 2015, Nature Biotechnology.

[26]  S. Hubbard,et al.  Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p , 2015, Scientific Reports.

[27]  David E. Ruckerbauer,et al.  Quantitative analysis of proteome and lipidome dynamics reveals functional regulation of global lipid metabolism. , 2015, Chemistry & biology.

[28]  A. Gavin,et al.  A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses , 2015, Cell.

[29]  M. Ritchie,et al.  Methods of integrating data to uncover genotype–phenotype interactions , 2015, Nature Reviews Genetics.

[30]  R. Knight,et al.  Molecular cartography of the human skin surface in 3D , 2015, Proceedings of the National Academy of Sciences.

[31]  J. Asara,et al.  Triomics Analysis of Imatinib-Treated Myeloma Cells Connects Kinase Inhibition to RNA Processing and Decreased Lipid Biosynthesis. , 2015, Analytical chemistry.

[32]  Junwei Han,et al.  Global Prioritization of Disease Candidate Metabolites Based on a Multi-omics Composite Network , 2015, Scientific Reports.

[33]  E. Voest,et al.  Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer , 2016, Oncogene.

[34]  Kristin E. Burnum-Johnson,et al.  MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses , 2016, mSystems.

[35]  Markus M. Rinschen,et al.  Altered lipid metabolism in the aging kidney identified by three layered omic analysis , 2016, Aging.

[36]  Stuart M. Allen,et al.  Mapping the Human Platelet Lipidome Reveals Cytosolic Phospholipase A2 as a Regulator of Mitochondrial Bioenergetics during Activation , 2016, Cell metabolism.

[37]  Albert Sickmann,et al.  Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial Multimolecular Omics Approach for Systems Biology* , 2016, Molecular & Cellular Proteomics.

[38]  James A. West,et al.  Integration of metabolomics, lipidomics and clinical data using a machine learning method , 2016, BMC Bioinformatics.

[39]  Michael L. Gatza,et al.  Proteogenomics connects somatic mutations to signaling in breast cancer , 2016, Nature.

[40]  S. Haferkamp,et al.  Multi-omics Analysis of Serum Samples Demonstrates Reprogramming of Organ Functions Via Systemic Calcium Mobilization and Platelet Activation in Metastatic Melanoma* , 2016, Molecular & Cellular Proteomics.

[41]  Richard G. F. Visser,et al.  Integration of multi-omics data for prediction of phenotypic traits using random forest , 2016, BMC Bioinformatics.

[42]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[43]  Olivier Langlois,et al.  Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas , 2016, Nature Communications.

[44]  O. Fiehn,et al.  Integrated metabolomics and proteomics highlight altered nicotinamide and polyamine pathways in lung adenocarcinoma , 2017, Carcinogenesis.