Spiral fat arcs - Bounding regions with cubic convergence
暂无分享,去创建一个
[1] Norimasa Yoshida,et al. Log-aesthetic space curve segments , 2009, Symposium on Solid and Physical Modeling.
[2] A. Kurnosenko. Applying inversion to construct rational spiral curves , 2009 .
[3] Fujio Yamaguchi,et al. Computer-Aided Geometric Design , 2002, Springer Japan.
[4] Yves Mineur,et al. A shape controled fitting method for Bézier curves , 1998, Comput. Aided Geom. Des..
[5] Bruce R. Piper,et al. Rational cubic spirals , 2008, Comput. Aided Des..
[6] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[7] Tomoyuki Nishita,et al. Curve intersection using Bézier clipping , 1990, Comput. Aided Des..
[8] Dereck S. Meek,et al. Planar spirals that match G2 Hermite data , 1998, Comput. Aided Geom. Des..
[9] Zhiyang Yao,et al. A Novel Cutter Path Planning Approach to High Speed Machining , 2006 .
[10] Carlo H. Séquin,et al. Interpolating Splines: Which is the fairest of them all? , 2009 .
[11] Gershon Elber,et al. Symbolic and Numeric Computation in Curve Interrogation , 1995, Comput. Graph. Forum.
[12] Thomas W. Sederberg,et al. Fat arcs: A bounding region with cubic convergence , 1989, Comput. Aided Geom. Des..
[13] A. I. Kurnosenko. Applying inversion to construct planar, rational spirals that satisfy two-point G2 Hermite data , 2010, Comput. Aided Geom. Des..
[14] Gerald E. Farin,et al. Class A Bézier curves , 2006, Comput. Aided Geom. Des..
[15] Raphael L. Levien,et al. From Spiral to Spline: Optimal Techniques in Interactive Curve Design , 2009 .
[16] M. Barton,et al. ROOTS OF SYSTEMS OF POLYNOMIALS BY LINEAR CLIPPING , 2007 .
[17] Gershon Elber,et al. Subdivision termination criteria in subdivision multivariate solvers using dual hyperplanes representations , 2007, Comput. Aided Des..
[18] Michael Bartoň. Quadratic Clipping and its Generalization for Polynomial Systems , 2007 .
[19] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[20] Christian Schulz. Bézier clipping is quadratically convergent , 2009, Comput. Aided Geom. Des..
[21] Dereck S. Meek,et al. G2 curve design with a pair of Pythagorean Hodograph quintic spiral segments , 2007, Comput. Aided Geom. Des..
[22] Ayellet Tal,et al. 3D Euler spirals for 3D curve completion , 2010, Comput. Geom..
[23] Thomas W. Sederberg,et al. Loop detection in surface patch intersections , 1988, Comput. Aided Geom. Des..
[24] Bert Jüttler,et al. A Quadratic Clipping Step with Superquadratic Convergence for Bivariate Polynomial Systems , 2011, Math. Comput. Sci..
[25] Bert Jüttler,et al. Fat Arcs for Implicitly Defined Curves , 2008, MMCS.