Organization of the Drosophila larval visual circuit

Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.

[1]  G. Technau,et al.  Pre-existing neuronal pathways in the developing optic lobes of Drosophila. , 1989, Development.

[2]  I. Meinertzhagen Fly photoreceptor synapses: their development, evolution, and plasticity. , 1989, Journal of neurobiology.

[3]  Rachel I. Wilson,et al.  Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system , 2013, Proceedings of the National Academy of Sciences.

[4]  Simon G Sprecher,et al.  Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli. , 2016, Developmental biology.

[5]  Alexander Borst,et al.  Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision , 2014, The Journal of Neuroscience.

[6]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[7]  Casey M. Schneider-Mizell,et al.  Synaptic transmission parallels neuromodulation in a central food-intake circuit , 2016, bioRxiv.

[8]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[9]  Y. Jan,et al.  Light-Induced Structural and Functional Plasticity in Drosophila Larval Visual System , 2011, Science.

[10]  Zhefeng Gong,et al.  Behavioral dissection of Drosophila larval phototaxis. , 2009, Biochemical and biophysical research communications.

[11]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[12]  A. Simoni,et al.  Cryptochrome Antagonizes Synchronization of Drosophila’s Circadian Clock to Temperature Cycles , 2013, Current Biology.

[13]  N. Randel,et al.  Inter-individual stereotypy of the Platynereis larval visual connectome , 2015, eLife.

[14]  N. Strausfeld Insect Vision and Olfaction: Common Design Principles of Neuronal Organization , 1989 .

[15]  R. Hardie,et al.  XPORT-Dependent Transport of TRP and Rhodopsin , 2011, Neuron.

[16]  Albert Cardona,et al.  The wiring diagram of a glomerular olfactory system , 2016 .

[17]  M. Sokolowski,et al.  Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development. , 1995, Journal of neurogenetics.

[18]  R Latorre,et al.  L‐Glutamate activates excitatory and inhibitory channels in Drosophila larval muscle , 1989, FEBS letters.

[19]  Marc Gershow,et al.  Sensory determinants of behavioral dynamics in Drosophila thermotaxis , 2014, Proceedings of the National Academy of Sciences.

[20]  M. Heisenberg,et al.  Visual learning in individually assayed Drosophila larvae , 2004, Journal of Experimental Biology.

[21]  Suvadip Mukherjee,et al.  Visual attraction in Drosophila larvae develops during a critical period and is modulated by crowding conditions , 2015, Journal of Comparative Physiology A.

[22]  Andreas S. Thum,et al.  The Role of Dopamine in Drosophila Larval Classical Olfactory Conditioning , 2009, PloS one.

[23]  Andreas S. Thum,et al.  Characterization of the octopaminergic and tyraminergic neurons in the central brain of Drosophila larvae , 2014, The Journal of comparative neurology.

[24]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[25]  J. Sanes,et al.  Design Principles of Insect and Vertebrate Visual Systems , 2010, Neuron.

[26]  Y. Hamasaka,et al.  Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured PDF-containing clock neurons of Drosophila. , 2004, Journal of neurophysiology.

[27]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[28]  H. Aberle,et al.  The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. , 2006, Gene expression patterns : GEP.

[29]  Stephan Saalfeld,et al.  CATMAID: collaborative annotation toolkit for massive amounts of image data , 2009, Bioinform..

[30]  Rafael Cantera,et al.  Synaptic circuitry of identified neurons in the antennal lobe of Drosophila melanogaster , 2016, The Journal of comparative neurology.

[31]  E. Salcedo,et al.  The Green-absorbing Drosophila Rh6 Visual Pigment Contains a Blue-shifting Amino Acid Substitution That Is Conserved in Vertebrates* , 2009, Journal of Biological Chemistry.

[32]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[33]  Xiangzhong Zheng,et al.  Serotonin Modulates Circadian Entrainment in Drosophila , 2005, Neuron.

[34]  Yevgeniy B. Slutskiy,et al.  Projection neurons in Drosophila antennal lobes signal the acceleration of odor concentrations , 2015, eLife.

[35]  Robin L Cooper,et al.  Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster , 2016, Neural plasticity.

[36]  M. Burrows The Neurobiology of an Insect Brain , 1996 .

[37]  Michael B. Reiser,et al.  Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016, eLife.

[38]  Michael B. Reiser,et al.  Direct Observation of ON and OFF Pathways in the Drosophila Visual System , 2014, Current Biology.

[39]  Albert Cardona,et al.  The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil. , 2011, Developmental biology.

[40]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[41]  L. Vosshall,et al.  Molecular architecture of smell and taste in Drosophila. , 2007, Annual review of neuroscience.

[42]  P. Salvaterra,et al.  Localization of choline acetyltransferase‐expressing neurons in Drosophila nervous system , 1999, Microscopy research and technique.

[43]  Parvez Ahammad,et al.  Dynamical feature extraction at the sensory periphery guides chemotaxis , 2015, eLife.

[44]  R. Stocker,et al.  Localized olfactory representation in mushroom bodies of Drosophila larvae , 2009, Proceedings of the National Academy of Sciences.

[45]  William F Tobin,et al.  Wiring variations that enable and constrain neural computation in a sensory microcircuit , 2017 .

[46]  J. C. Hall,et al.  Spatial and Temporal Expression of the period andtimeless Genes in the Developing Nervous System ofDrosophila: Newly Identified Pacemaker Candidates and Novel Features of Clock Gene Product Cycling , 1997, The Journal of Neuroscience.

[47]  Dennis Pauls,et al.  The Role of octopamine and tyramine in Drosophila larval locomotion , 2012, The Journal of comparative neurology.

[48]  Damon A. Clark,et al.  Parallel Computations in Insect and Mammalian Visual Motion Processing , 2016, Current Biology.

[49]  Andrew M Dacks,et al.  Serotonin Modulates Olfactory Processing in the Antennal Lobe of Drosophila , 2009, Journal of neurogenetics.

[50]  B. Smith,et al.  A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: overshadowing, blocking and unblocking can arise from lateral inhibition , 1997, Behavioural Brain Research.

[51]  Aurel A Lazar,et al.  Figures and figure supplements Projection neurons in Drosophila antennal lobes signal the acceleration of odor concentrations , 2015 .

[52]  S. Sprecher,et al.  The transcription factor Glass links eye field specification with photoreceptor differentiation in Drosophila , 2016, Development.

[53]  Barry Condron,et al.  The simple fly larval visual system can process complex images , 2012, Nature Communications.

[54]  Kouji Yasuyama,et al.  Localization of choline acetyltransferase-expressing neurons in the larval visual system of Drosophila melanogaster. , 1995 .

[55]  Aravinthan D. T. Samuel,et al.  Sensorimotor structure of Drosophila larva phototaxis , 2013, Proceedings of the National Academy of Sciences.

[56]  Feng Li,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[57]  M. Burrows,et al.  Proprioceptive sensory neurons of a locust leg receive rhythmic presynpatic inhibition during walking , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Ana Regina Campos,et al.  Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct , 2005, The Journal of comparative neurology.

[59]  Mu Sun,et al.  Neuroendocrine Control of Drosophila Larval Light Preference , 2013, Science.

[60]  Ian A. Meinertzhagen,et al.  Candidate Neural Substrates for Off-Edge Motion Detection in Drosophila , 2014, Current Biology.

[61]  Matthias Landgraf,et al.  Metamorphosis of an identified serotonergic neuron in the Drosophila olfactory system , 2007, Neural Development.

[62]  M. Friedrich Opsins and cell fate in the Drosophila Bolwig organ: tricky lessons in homology inference , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[63]  Juergen A. Knoblich,et al.  Quantitative Analysis of Protein Dynamics during Asymmetric Cell Division , 2005, Current Biology.

[64]  John R. Carlson,et al.  Translation of Sensory Input into Behavioral Output via an Olfactory System , 2008, Neuron.

[65]  Shawn R. Olsen,et al.  Lateral presynaptic inhibition mediates gain control in an olfactory circuit , 2008, Nature.

[66]  Michael Bate,et al.  Electrophysiological Development of Central Neurons in theDrosophila Embryo , 1998, The Journal of Neuroscience.

[67]  Simon G. Sprecher,et al.  Age- and Wavelength-Dependency of Drosophila Larval Phototaxis and Behavioral Responses to Natural Lighting Conditions , 2017, Front. Behav. Neurosci..

[68]  Berthold G. Hedwig,et al.  Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition , 2016, Front. Physiol..

[69]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[70]  A. Borst,et al.  Common circuit design in fly and mammalian motion vision , 2015, Nature Neuroscience.

[71]  A. Cardona,et al.  Elastic volume reconstruction from series of ultra-thin microscopy sections , 2012, Nature Methods.

[72]  Gáspár Jékely,et al.  Neuronal connectome of a sensory-motor circuit for visual navigation , 2014, eLife.

[73]  Simon G. Sprecher,et al.  Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons , 2008, Nature.

[74]  François Rouyer,et al.  Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. , 2002, Development.

[75]  V. Hartenstein,et al.  The embryonic development of the Drosophila visual system , 1993, Cell and Tissue Research.

[76]  S. Benzer,et al.  Development of the Drosophila retina, a neurocrystalline lattice. , 1976, Developmental biology.

[77]  Ian A Meinertzhagen,et al.  Synaptic connections of PDF‐immunoreactive lateral neurons projecting to the dorsal protocerebrum of Drosophila melanogaster , 2010, The Journal of comparative neurology.

[78]  Leslie B. Vosshall,et al.  Chemotaxis Behavior Mediated by Single Larval Olfactory Neurons in Drosophila , 2005, Current Biology.

[79]  Ana Regina Campos,et al.  Genetic dissection of trophic interactions in the larval optic neuropil of Drosophila melanogaster. , 2005, Developmental biology.

[80]  Simon G. Sprecher,et al.  The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function , 2012, PloS one.

[81]  Katherine I. Nagel,et al.  Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics , 2014, Nature Neuroscience.

[82]  Casey M. Schneider-Mizell,et al.  Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila , 2016, Cell.

[83]  Simon G. Sprecher,et al.  Binary Cell Fate Decisions and Fate Transformation in the Drosophila Larval Eye , 2013, PLoS genetics.

[84]  Natalie M Bernat,et al.  Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration , 2015, eLife.

[85]  Mark A. Frye,et al.  Olfactory Neuromodulation of Motion Vision Circuitry in Drosophila , 2015, Current Biology.

[86]  R. Stocker,et al.  Immunoreactivity against choline acetyltransferase, γ‐aminobutyric acid, histamine, octopamine, and serotonin in the larval chemosensory system of Dosophila melanogaster , 2002, The Journal of comparative neurology.

[87]  Louis K. Scheffer,et al.  Synaptic circuits and their variations within different columns in the visual system of Drosophila , 2015, Proceedings of the National Academy of Sciences.

[88]  Simon G Sprecher,et al.  Distinct Visual Pathways Mediate Drosophila Larval Light Avoidance and Circadian Clock Entrainment , 2011, The Journal of Neuroscience.

[89]  Andreas S. Thum,et al.  Capacity of visual classical conditioning in Drosophila larvae. , 2011, Behavioral neuroscience.

[90]  Irina Sinakevitch,et al.  Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes , 2007, Developmental neurobiology.

[91]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[92]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[93]  C. Helfrich-Förster,et al.  Development of pigment‐dispersing hormone‐immunoreactive neurons in the nervous system of Drosophila melanogaster , 1997, The Journal of comparative neurology.

[94]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[95]  Ana Regina Campos,et al.  Role of serotonergic neurons in the Drosophila larval response to light , 2009, BMC Neuroscience.

[96]  Alexander Borst,et al.  Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila , 2010, Nature Neuroscience.

[97]  Marie P Suver,et al.  Octopamine Neurons Mediate Flight-Induced Modulation of Visual Processing in Drosophila , 2012, Current Biology.

[98]  Aaron DiAntonio,et al.  Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS , 2008, The Journal of comparative neurology.

[99]  Yves Grau,et al.  Glutamate and its metabotropic receptor in Drosophila clock neuron circuits , 2007, The Journal of comparative neurology.

[100]  Stephan Saalfeld,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015 .

[101]  Volker Hartenstein,et al.  Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain. , 2007, Gene expression patterns : GEP.

[102]  Shizhong Li,et al.  The A- and B-type muscarinic acetylcholine receptors from Drosophila melanogaster couple to different second messenger pathways. , 2015, Biochemical and biophysical research communications.

[103]  R. Hardie Is histamine a neurotransmitter in insect photoreceptors? , 1987, Journal of Comparative Physiology A.

[104]  Charlotte Helfrich-Förster,et al.  Organization of Circadian Behavior Relies on Glycinergic Transmission. , 2017, Cell reports.

[105]  Esteban O. Mazzoni,et al.  Circadian Pacemaker Neurons Transmit and Modulate Visual Information to Control a Rapid Behavioral Response , 2005, Neuron.