The Concise Guide to Pharmacology 2013/14: Ligand-Gated Ion Channels

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.

[1]  Christopher Southan,et al.  The Concise Guide to PHARMACOLOGY 2015/16: Ligand‐gated ion channels , 2015, British journal of pharmacology.

[2]  A. Jaggi,et al.  Multifunctional aspects of allopregnanolone in stress and related disorders , 2014, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[3]  G. Hardingham,et al.  Influence of GluN2 subunit identity on NMDA receptor function , 2013, Neuropharmacology.

[4]  Sheryl S. Smith α4βδ GABAA receptors and tonic inhibitory current during adolescence: effects on mood and synaptic plasticity , 2013, Front. Neural Circuits.

[5]  Qiang Zhou,et al.  NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease , 2013, Nature Reviews Neuroscience.

[6]  R. North,et al.  P2X Receptors as Drug Targets , 2013, Molecular Pharmacology.

[7]  M. Mayer,et al.  Functional insights from glutamate receptor ion channel structures. , 2013, Annual review of physiology.

[8]  J. Hanrahan,et al.  Potency of GABA at human recombinant GABAA receptors expressed in Xenopus oocytes: a mini review , 2013, Amino Acids.

[9]  E. Sigel,et al.  Structure, Function, and Modulation of GABAA Receptors* , 2012, The Journal of Biological Chemistry.

[10]  Baljit S. Khakh,et al.  Neuromodulation by Extracellular ATP and P2X Receptors in the CNS , 2012, Neuron.

[11]  M. Schaefer,et al.  Positive allosteric modulation by ivermectin of human but not murine P2X7 receptors , 2012, British journal of pharmacology.

[12]  G. Hardingham,et al.  TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner , 2012, Neuropharmacology.

[13]  G. Hardingham,et al.  Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist , 2012, British journal of pharmacology.

[14]  S. Traynelis,et al.  Subunit-Selective Allosteric Inhibition of Glycine Binding to NMDA Receptors , 2012, The Journal of Neuroscience.

[15]  Annette Nicke,et al.  Molecular and functional properties of P2X receptors—recent progress and persisting challenges , 2012, Purinergic Signalling.

[16]  G. Popescu,et al.  Modes of glutamate receptor gating , 2012, The Journal of physiology.

[17]  Jon W. Johnson,et al.  A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction , 2011, Nature Neuroscience.

[18]  Chih-Hung Lee,et al.  α4β2 neuronal nicotinic receptor positive allosteric modulation: an approach for improving the therapeutic index of α4β2 nAChR agonists in pain. , 2011, Biochemical pharmacology.

[19]  P. Whiteaker,et al.  Progress and challenges in the study of α6-containing nicotinic acetylcholine receptors. , 2011, Biochemical pharmacology.

[20]  J. Yakel,et al.  Allosteric modulators of the α4β2 subtype of neuronal nicotinic acetylcholine receptors. , 2011, Biochemical pharmacology.

[21]  Jie Wu,et al.  Naturally-expressed nicotinic acetylcholine receptor subtypes. , 2011, Biochemical pharmacology.

[22]  R. Papke,et al.  Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. , 2011, Biochemical pharmacology.

[23]  H. Lester,et al.  Varenicline Is a Potent Agonist of the Human 5-Hydroxytryptamine3 Receptor , 2011, Journal of Pharmacology and Experimental Therapeutics.

[24]  Stanko S. Stojilkovic,et al.  Activation and Regulation of Purinergic P2X Receptor Channels , 2011, Pharmacological Reviews.

[25]  Gonzalo Yevenes,et al.  Allosteric modulation of glycine receptors , 2011, British journal of pharmacology.

[26]  Erik Lindahl,et al.  Structural basis for alcohol modulation of a pentameric ligand-gated ion channel , 2011, Proceedings of the National Academy of Sciences.

[27]  J. Lerma Net(o) excitement for kainate receptors , 2011, Nature Neuroscience.

[28]  A. J. Thompson,et al.  Binding Sites for Bilobalide, Diltiazem, Ginkgolide, and Picrotoxinin at the 5-HT3 Receptor , 2011, Molecular Pharmacology.

[29]  S. Moss,et al.  The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. , 2011, Physiological reviews.

[30]  A. J. Thompson,et al.  Cysteine modification reveals which subunits form the ligand binding site in human heteromeric 5-HT3AB receptors , 2011, The Journal of physiology.

[31]  Hiro Furukawa,et al.  Subunit Arrangement and Phenylethanolamine Binding in GluN1/GluN2B NMDA Receptors , 2011, Nature.

[32]  Eric Gouaux,et al.  Principles of activation and permeation in an anion-selective Cys-loop receptor , 2011, Nature.

[33]  T. Fuchs,et al.  GABAA Receptor Trafficking-Mediated Plasticity of Inhibitory Synapses , 2011, Neuron.

[34]  Yan Xu,et al.  Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. , 2011, Nature chemical biology.

[35]  R. Nicoll,et al.  The Expanding Social Network of Ionotropic Glutamate Receptors: TARPs and Other Transmembrane Auxiliary Subunits , 2011, Neuron.

[36]  H. Lester,et al.  Neural Systems Governed by Nicotinic Acetylcholine Receptors: Emerging Hypotheses , 2011, Neuron.

[37]  P. Paoletti Molecular basis of NMDA receptor functional diversity , 2011, The European journal of neuroscience.

[38]  Kelly R. Tan,et al.  Hooked on benzodiazepines: GABAA receptor subtypes and addiction , 2011, Trends in Neurosciences.

[39]  V. Tsetlin,et al.  Assembly of nicotinic and other Cys‐loop receptors , 2011, Journal of neurochemistry.

[40]  J. Kapeller,et al.  Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5‐HT3C, 5‐HT3D, and 5‐HT3E , 2011, The Journal of comparative neurology.

[41]  J. Hanrahan,et al.  Medicinal chemistry of ρ GABAC receptors. , 2011, Future medicinal chemistry.

[42]  B. Niesler 5-HT(3) receptors: potential of individual isoforms for personalised therapy. , 2011, Current opinion in pharmacology.

[43]  H. Shaban,et al.  Characterization of 2-[[4-Fluoro-3-(trifluoromethyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemethanol (JNJ-1930942), a Novel Positive Allosteric Modulator of the α7 Nicotinic Acetylcholine Receptor , 2011, Journal of Pharmacology and Experimental Therapeutics.

[44]  A. J. Thompson,et al.  Ginkgolide B and bilobalide block the pore of the 5-HT3 receptor at a location that overlaps the picrotoxin binding site , 2011, Neuropharmacology.

[45]  R. Pearce,et al.  GABAA,slow: causes and consequences , 2011, Trends in Neurosciences.

[46]  J. Changeux,et al.  X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel , 2011, Nature.

[47]  W. Sieghart,et al.  The GABAA Receptor α+β− Interface: A Novel Target for Subtype Selective Drugs , 2011, The Journal of Neuroscience.

[48]  R. Olsen,et al.  THEME ISSUE: MECHANISMS OF ANESTHESIA GABAA receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation Les récepteurs GABAA comme cibles moléculaires des anesthésiques généraux: l’identification des sites de liaison procure des , 2011 .

[49]  Laricia Bragg,et al.  P2X receptor channels show three-fold symmetry in ionic charge selectivity and unitary conductance , 2010, Nature Neuroscience.

[50]  G. Young,et al.  Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site , 2008, Proceedings of the National Academy of Sciences.

[51]  A. Plested Kainate receptor modulation by sodium and chloride. , 2011, Advances in experimental medicine and biology.

[52]  E. Sigel,et al.  A closer look at the high affinity benzodiazepine binding site on GABAA receptors. , 2011, Current topics in medicinal chemistry.

[53]  D. Jane,et al.  Mapping the Ligand Binding Sites of Kainate Receptors: Molecular Determinants of Subunit-Selective Binding of the Antagonist [3H]UBP310 , 2010, Molecular Pharmacology.

[54]  A. Capelli,et al.  Identification and Characterization of Novel NMDA Receptor Antagonists Selective for NR2A- over NR2B-Containing Receptors , 2010, Journal of Pharmacology and Experimental Therapeutics.

[55]  T. Nakagawa The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors , 2010, Molecular Neurobiology.

[56]  D. Perrais,et al.  Gating and permeation of kainate receptors: differences unveiled. , 2010, Trends in pharmacological sciences.

[57]  S. Stahl,et al.  Searching for perfect sleep: the continuing evolution of GABAA receptor modulators as hypnotics , 2010, Journal of psychopharmacology.

[58]  S. Dunn,et al.  Benzodiazepine modulation of the rat GABAA receptor α4β3γ2L subtype expressed in Xenopus oocytes , 2010, Neuropharmacology.

[59]  R. Keith,et al.  In vitro binding characteristics of [3H]AZ11637326, a novel alpha7-selective neuronal nicotinic receptor agonist radioligand. , 2010, European journal of pharmacology.

[60]  Andrew K. Jones,et al.  Proteins interacting with nicotinic acetylcholine receptors: expanding functional and therapeutic horizons. , 2010, Trends in pharmacological sciences.

[61]  J. Walstab,et al.  5-HT(3) receptors: role in disease and target of drugs. , 2010, Pharmacology & therapeutics.

[62]  H. Lester,et al.  The structural basis of function in Cys-loop receptors , 2010, Quarterly Reviews of Biophysics.

[63]  G. Ecker,et al.  Valerenic acid derivatives as novel subunit‐selective GABAA receptor ligands –in vitro and in vivo characterization , 2010, British journal of pharmacology.

[64]  R. Dingledine,et al.  Glutamate Receptor Ion Channels: Structure, Regulation, and Function , 2010, Pharmacological Reviews.

[65]  A. Kaczor,et al.  Molecular structure of ionotropic glutamate receptors. , 2010, Current medicinal chemistry.

[66]  L. Aguayo,et al.  Molecular Requirements for Ethanol Differential Allosteric Modulation of Glycine Receptors Based on Selective Gβγ Modulation* , 2010, The Journal of Biological Chemistry.

[67]  D. Bertrand,et al.  Associated proteins: The universal toolbox controlling ligand gated ion channel function. , 2010, Biochemical pharmacology.

[68]  C. Low,et al.  New Insights into the Not-So-New NR3 Subunits of N-Methyl-d-aspartate Receptor: Localization, Structure, and Function , 2010, Molecular Pharmacology.

[69]  J. Gever,et al.  AF‐353, a novel, potent and orally bioavailable P2X3/P2X2/3 receptor antagonist , 2010, British journal of pharmacology.

[70]  C. Hammer,et al.  RIC-3 Exclusively Enhances the Surface Expression of Human Homomeric 5-Hydroxytryptamine Type 3A (5-HT3A) Receptors Despite Direct Interactions with 5-HT3A, -C, -D, and -E Subunits , 2010, The Journal of Biological Chemistry.

[71]  H. Haas,et al.  Fragrant Dioxane Derivatives Identify β1-Subunit-containing GABAA Receptors* , 2010, The Journal of Biological Chemistry.

[72]  B. Philpot,et al.  Influence of the NR3A subunit on NMDA receptor functions , 2010, Progress in Neurobiology.

[73]  M. Lochner,et al.  Agonists and antagonists bind to an A-A interface in the heteromeric 5-HT3AB receptor. , 2010, Biophysical journal.

[74]  T. Smart,et al.  Binding, activation and modulation of Cys-loop receptors. , 2010, Trends in pharmacological sciences.

[75]  A. Galanopoulou Mutations affecting GABAergic signaling in seizures and epilepsy , 2010, Pflügers Archiv - European Journal of Physiology.

[76]  S. Tomita Regulation of ionotropic glutamate receptors by their auxiliary subunits. , 2010, Physiology.

[77]  J. Changeux Allosteric receptors: from electric organ to cognition. , 2010, Annual review of pharmacology and toxicology.

[78]  D. Bowie Ion‐dependent gating of kainate receptors , 2010, The Journal of physiology.

[79]  J. Atack GABAA receptor alpha2/alpha3 subtype-selective modulators as potential nonsedating anxiolytics. , 2010, Current topics in behavioral neurosciences.

[80]  E. Gouaux,et al.  X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor , 2009, Nature.

[81]  M. Ohman,et al.  RNA editing and its impact on GABAA receptor function. , 2009, Biochemical Society transactions.

[82]  D. Donnelly-roberts,et al.  The antihyperalgesic activity of a selective P2X7 receptor antagonist, A-839977, is lost in IL-1αβ knockout mice , 2009, Behavioural Brain Research.

[83]  Matthew C. Walker,et al.  Extrasynaptic GABAA Receptors: Form, Pharmacology, and Function , 2009, The Journal of Neuroscience.

[84]  T. Sixma,et al.  Insight in nAChR subtype selectivity from AChBP crystal structures. , 2009, Biochemical pharmacology.

[85]  Michele Zoli,et al.  Structural and functional diversity of native brain neuronal nicotinic receptors. , 2009, Biochemical pharmacology.

[86]  Y. Utkin,et al.  Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. , 2009, Biochemical pharmacology.

[87]  R. Papke,et al.  TC-5619: an alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. , 2009, Biochemical pharmacology.

[88]  J. Atack GABAA Receptor α2/α3 Subtype-Selective Modulators as Potential Nonsedating Anxiolytics , 2009 .

[89]  N. Mirza,et al.  Developing analgesics by enhancing spinal inhibition after injury: GABAA receptor subtypes as novel targets. , 2009, Trends in pharmacological sciences.

[90]  Antoine Taly,et al.  Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system , 2009, Nature Reviews Drug Discovery.

[91]  D. Donnelly-roberts,et al.  Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors , 2009, British journal of pharmacology.

[92]  R. Dutzler,et al.  A prokaryotic perspective on pentameric ligand-gated ion channel structure. , 2009, Current opinion in structural biology.

[93]  C. Briggs,et al.  In Vitro Pharmacological Characterization of a Novel Allosteric Modulator of α7 Neuronal Acetylcholine Receptor, 4-(5-(4-Chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide (A-867744), Exhibiting Unique Pharmacological Profile , 2009, Journal of Pharmacology and Experimental Therapeutics.

[94]  E. Gouaux,et al.  Crystal structure of the ATP-gated P2X4 ion channel in the closed state , 2009, Nature.

[95]  F. Hucho,et al.  Nicotinic acetylcholine receptors at atomic resolution. , 2009, Current opinion in pharmacology.

[96]  Malgorzata N. Drwal,et al.  Different binding modes of tropeines mediating inhibition and potentiation of α1 glycine receptors , 2009, Journal of neurochemistry.

[97]  Jie Wu,et al.  Mysterious α6-containing nAChRs: function, pharmacology, and pathophysiology , 2009, Acta Pharmacologica Sinica.

[98]  R. Olsen,et al.  Neurosteroids Allosterically Modulate Binding of the Anesthetic Etomidate to γ-Aminobutyric Acid Type A Receptors* , 2009, Journal of Biological Chemistry.

[99]  Jon W. Johnson,et al.  Mechanism of differential control of NMDA receptor activity by NR2 subunits , 2009, Nature.

[100]  W. C. Clay,et al.  Mechanism of action of species‐selective P2X7 receptor antagonists , 2009, British journal of pharmacology.

[101]  T. Deeb,et al.  Direct Subunit-Dependent Multimodal 5-Hydroxytryptamine3 Receptor Antagonism by Methadone , 2009, Molecular Pharmacology.

[102]  M. Karst,et al.  Modulation of Glycine Receptor Function by the Synthetic Cannabinoid HU210 , 2009, Pharmacology.

[103]  A. Surprenant,et al.  The P2X7 receptor–pannexin connection to dye uptake and IL-1β release , 2009, Purinergic Signalling.

[104]  R. North,et al.  Signaling at purinergic P2X receptors. , 2009, Annual review of physiology.

[105]  Roberto Malinow,et al.  Synaptic AMPA Receptor Plasticity and Behavior , 2009, Neuron.

[106]  M. Karst,et al.  The Nonpsychotropic Cannabinoid Cannabidiol Modulates and Directly Activates Alpha-1 and Alpha-1-Beta Glycine Receptor Function , 2009, Pharmacology.

[107]  J. Lynch,et al.  Native glycine receptor subtypes and their physiological roles , 2009, Neuropharmacology.

[108]  G. Burton,et al.  Structure-activity relationships of neuroactive steroids acting on the GABAA receptor. , 2009, Current medicinal chemistry.

[109]  Graham L. Collingridge,et al.  A nomenclature for ligand-gated ion channels , 2009, Neuropharmacology.

[110]  R. Olsen,et al.  GABAA receptors: Subtypes provide diversity of function and pharmacology , 2009, Neuropharmacology.

[111]  G. Collingridge,et al.  Kainate receptors: Pharmacology, function and therapeutic potential , 2009, Neuropharmacology.

[112]  J. Fisher The anti-convulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator , 2009, Neuropharmacology.

[113]  John A. Peters,et al.  The 5-HT3 receptor – the relationship between structure and function , 2009, Neuropharmacology.

[114]  J. Lambert,et al.  Novel compounds selectively enhance δ subunit containing GABAA receptors and increase tonic currents in thalamus , 2009, Neuropharmacology.

[115]  D. Lodge The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature , 2009, Neuropharmacology.

[116]  Cecilia Gotti,et al.  Diversity of vertebrate nicotinic acetylcholine receptors , 2009, Neuropharmacology.

[117]  D. Jane,et al.  Antagonism of recombinant and native GluK3-containing kainate receptors , 2009, Neuropharmacology.

[118]  J. Spencer,et al.  Characterisation of 5‐HT3C, 5‐HT3D and 5‐HT3E receptor subunits: evolution, distribution and function , 2009, Journal of neurochemistry.

[119]  E. Albuquerque,et al.  Mammalian nicotinic acetylcholine receptors: from structure to function. , 2009, Physiological reviews.

[120]  M. Beato,et al.  High Intracellular Chloride Slows the Decay of Glycinergic Currents , 2008, The Journal of Neuroscience.

[121]  R. Vandenberg,et al.  Subunit-specific modulation of glycine receptors by cannabinoids and N-arachidonyl-glycine. , 2008, Biochemical pharmacology.

[122]  P. Davies,et al.  3B but which 3B and that's just one of the questions: the heterogeneity of human 5-HT3 receptors. , 2008, Trends in pharmacological sciences.

[123]  Werner Sieghart,et al.  International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update , 2008, Pharmacological Reviews.

[124]  H. Betz,et al.  Supralinear potentiation of NR1/NR3A excitatory glycine receptors by Zn2+ and NR1 antagonist , 2008, Proceedings of the National Academy of Sciences.

[125]  B. Khakh,et al.  Patch–clamp coordinated spectroscopy shows P2X2 receptor permeability dynamics require cytosolic domain rearrangements but not Panx-1 channels , 2008, Proceedings of the National Academy of Sciences.

[126]  M. Hollmann,et al.  Shuffling the Deck Anew: How NR3 Tweaks NMDA Receptor Function , 2008, Molecular Neurobiology.

[127]  B. Orser,et al.  GABAA receptor subtypes underlying general anesthesia , 2008, Pharmacology Biochemistry and Behavior.

[128]  R. Nicoll,et al.  Regulation of AMPA receptor gating and pharmacology by TARP auxiliary subunits. , 2008, Trends in pharmacological sciences.

[129]  Thomas J. Raub,et al.  Discovery of N-[(3R,5R)-1-azabicyclo[3.2.1]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide as an agonist of the alpha7 nicotinic acetylcholine receptor: in vitro and in vivo activity. , 2008, Bioorganic & medicinal chemistry letters.

[130]  R. Papke,et al.  Extending the Analysis of Nicotinic Receptor Antagonists with the Study of A6 Nicotinic Receptor Subunit Chimeras , 2022 .

[131]  R. North,et al.  P2X1 and P2X5 Subunits Form the Functional P2X Receptor in Mouse Cortical Astrocytes , 2008, The Journal of Neuroscience.

[132]  T. Gloveli,et al.  Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy , 2008, Journal of cellular and molecular medicine.

[133]  C. Hammer,et al.  Serotonin type 3 receptor genes: HTR3A, B, C, D, E. , 2008, Pharmacogenomics.

[134]  S. Moss,et al.  GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition , 2008, Nature Reviews Neuroscience.

[135]  R. Peri,et al.  High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology , 2008, Nature Reviews Drug Discovery.

[136]  A. J. Thompson,et al.  Antimalarial drugs inhibit human 5‐HT3 and GABAA but not GABAC receptors , 2008, British journal of pharmacology.

[137]  R. Peoples,et al.  The 5-HT3B Subunit Confers Spontaneous Channel Opening and Altered Ligand Properties of the 5-HT3 Receptor* , 2008, Journal of Biological Chemistry.

[138]  N. Millar RIC‐3: a nicotinic acetylcholine receptor chaperone , 2008, British journal of pharmacology.

[139]  J. Changeux,et al.  Nicotinic receptors, allosteric proteins and medicine. , 2008, Trends in molecular medicine.

[140]  GABAA Receptor Subtype‐Selective Efficacy: TPA023, an α2/α3 Selective Non‐sedating Anxiolytic and α5IA, an α5 Selective Cognition Enhancer , 2008, CNS neuroscience & therapeutics.

[141]  J. Esteban Intracellular machinery for the transport of AMPA receptors , 2008, British journal of pharmacology.

[142]  C. Briggs,et al.  Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. , 2008, Journal of medicinal chemistry.

[143]  D. Bertrand,et al.  [3H]A-585539 [(1S,4S)-2,2-Dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1]heptane], a Novel High-Affinity α7 Neuronal Nicotinic Receptor Agonist: Radioligand Binding Characterization to Rat and Human Brain , 2008, Journal of Pharmacology and Experimental Therapeutics.

[144]  Matthew T. Geballe,et al.  Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes , 2008, The Journal of physiology.

[145]  A. Rodríguez-Moreno,et al.  Kainate receptors with a metabotropic modus operandi , 2007, Trends in Neurosciences.

[146]  J. Lambert,et al.  Neurosteroid modulation of synaptic and extrasynaptic GABA(A) receptors. , 2007, Pharmacology & therapeutics.

[147]  Matthew T. Geballe,et al.  Subunit-Specific Agonist Activity at NR2A-, NR2B-, NR2C-, and NR2D-Containing N-Methyl-d-aspartate Glutamate Receptors , 2007, Molecular Pharmacology.

[148]  Alastair M. Hosie,et al.  Neurosteroid binding sites on GABA(A) receptors. , 2007, Pharmacology & therapeutics.

[149]  C. Briggs,et al.  An Allosteric Modulator of the α7 Nicotinic Acetylcholine Receptor Possessing Cognition-Enhancing Properties in Vivo , 2007, Journal of Pharmacology and Experimental Therapeutics.

[150]  M. Parker,et al.  A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore , 2007, Journal of neurochemistry.

[151]  J. Sullivan,et al.  Broad-Spectrum Efficacy across Cognitive Domains by α7 Nicotinic Acetylcholine Receptor Agonism Correlates with Activation of ERK1/2 and CREB Phosphorylation Pathways , 2007, The Journal of Neuroscience.

[152]  David John Adams,et al.  Polymodal Regulation of NMDA Receptor-Channels , 2007, Channels.

[153]  P. Naur,et al.  Ionotropic glutamate-like receptor δ2 binds d-serine and glycine , 2007, Proceedings of the National Academy of Sciences.

[154]  G. Lagoumintzis,et al.  Muscle and neuronal nicotinic acetylcholine receptors , 2007 .

[155]  J. Woodward,et al.  Pharmacological Characterization of Glycine-Activated Currents in HEK 293 Cells Expressing N-Methyl-D-aspartate NR1 and NR3 Subunits , 2007, Journal of Pharmacology and Experimental Therapeutics.

[156]  J. Stroud,et al.  Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94 Å resolution , 2007, Nature Neuroscience.

[157]  J. Lynch,et al.  Molecular pharmacology of the glycine receptor chloride channel. , 2007, Current pharmaceutical design.

[158]  M. Sasamata,et al.  Evaluation of the pharmacological profile of ramosetron, a novel therapeutic agent for irritable bowel syndrome. , 2007, Journal of pharmacological sciences.

[159]  D. Donnelly-roberts,et al.  Discovery of P2X7 receptor‐selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states , 2007, British journal of pharmacology.

[160]  J. Rietdorf,et al.  Characterization of the Novel Human Serotonin Receptor Subunits 5-HT3C,5-HT3D, and 5-HT3E , 2007, Molecular Pharmacology.

[161]  H. Möhler Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors , 2007, Journal of neurochemistry.

[162]  Chris J. McBain,et al.  The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity , 2007, Neuron.

[163]  M. Kneussel,et al.  Trafficking and synaptic anchoring of ionotropic inhibitory neurotransmitter receptors , 2007, Biology of the cell.

[164]  D. Raines,et al.  Subunit-Dependent Modulation of the 5-Hydroxytryptamine Type 3 Receptor Open-Close Equilibrium by n-Alcohols , 2007, Journal of Pharmacology and Experimental Therapeutics.

[165]  W. Wisden,et al.  Does ethanol act preferentially via selected brain GABAA receptor subtypes? the current evidence is ambiguous. , 2007, Alcohol.

[166]  S. Dravid,et al.  Subunit‐specific mechanisms and proton sensitivity of NMDA receptor channel block , 2007, The Journal of physiology.

[167]  A. J. Thompson,et al.  The 5-HT3 receptor as a therapeutic target , 2007, Expert opinion on therapeutic targets.

[168]  R. Zukin,et al.  Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death , 2007, Trends in Neurosciences.

[169]  F. Kirchhoff,et al.  A novel glycine receptor beta subunit splice variant predicts an unorthodox transmembrane topology. Assembly into heteromeric receptor complexes. , 2007, The Journal of biological chemistry.

[170]  P. Paoletti,et al.  NMDA receptor subunits: function and pharmacology. , 2007, Current opinion in pharmacology.

[171]  J. Brockmöller,et al.  Tissue-specific alternative promoters of the serotonin receptor gene HTR3B in human brain and intestine. , 2007, Gene.

[172]  R. Olsen,et al.  GABAA receptor associated proteins: a key factor regulating GABAA receptor function , 2007, Journal of neurochemistry.

[173]  G. Lagoumintzis,et al.  Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. , 2007, The FEBS journal.

[174]  L. Vyklický,et al.  Subtype-dependence of N-methyl-d-aspartate receptor modulation by pregnenolone sulfate , 2006, Neuroscience.

[175]  G. Schmalzing,et al.  Molecular Determinants for G Protein βγ Modulation of Ionotropic Glycine Receptors* , 2006, Journal of Biological Chemistry.

[176]  J. Simon,et al.  Species and response dependent differences in the effects of MAPK inhibitors on P2X7 receptor function , 2006, British journal of pharmacology.

[177]  M. Braddock,et al.  Characterization of a selective and potent antagonist of human P2X7 receptors, AZ11645373 , 2006, British journal of pharmacology.

[178]  M. Seeliger,et al.  Hyperekplexia Phenotype of Glycine Receptor α1 Subunit Mutant Mice Identifies Zn2+ as an Essential Endogenous Modulator of Glycinergic Neurotransmission , 2006, Neuron.

[179]  R. Olsen,et al.  Identification of a GABAA Receptor Anesthetic Binding Site at Subunit Interfaces by Photolabeling with an Etomidate Analog , 2006, The Journal of Neuroscience.

[180]  R. Olsen,et al.  Low dose acute alcohol effects on GABA A receptor subtypes. , 2006, Pharmacology & therapeutics.

[181]  Y. Kuo,et al.  Roles of nicotinic acetylcholine receptor β subunits in function of human α4‐containing nicotinic receptors , 2006 .

[182]  A. J. Thompson,et al.  5-HT3 Receptors , 2012, The Journal of Biological Chemistry.

[183]  M. Zoli,et al.  Brain nicotinic acetylcholine receptors: native subtypes and their relevance. , 2006, Trends in pharmacological sciences.

[184]  E. Sher,et al.  Identification and Pharmacological Profile of a New Class of Selective Nicotinic Acetylcholine Receptor Potentiators , 2006, Journal of Pharmacology and Experimental Therapeutics.

[185]  D. Wyllie,et al.  Equilibrium Constants for (R)-[(S)-1-(4-Bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic Acid (NVP-AAM077) Acting at Recombinant NR1/NR2A and NR1/NR2B N-Methyl-d-aspartate Receptors: Implications for Studies of Synaptic Transmission , 2006, Molecular Pharmacology.

[186]  Thomas J. Raub,et al.  Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure--activity relationship. , 2006, Journal of medicinal chemistry.

[187]  Mark Farrant,et al.  Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond , 2006, Current Opinion in Neurobiology.

[188]  Heinrich Betz,et al.  Glycine receptors: recent insights into their structural organization and functional diversity , 2006, Journal of neurochemistry.

[189]  J. Nielsen,et al.  Molecular cloning and pharmacological characterization of serotonin 5-HT(3A) receptor subtype in dog. , 2006, European journal of pharmacology.

[190]  D. Wyllie,et al.  Pharmacological insights obtained from structure–function studies of ionotropic glutamate receptors , 2006, British journal of pharmacology.

[191]  S. Sine,et al.  Recent advances in Cys-loop receptor structure and function , 2006, Nature.

[192]  M. Mayer Glutamate receptors at atomic resolution , 2006, Nature.

[193]  A. Michel,et al.  Decavanadate, a P2X receptor antagonist, and its use to study ligand interactions with P2X7 receptors. , 2006, European journal of pharmacology.

[194]  M. Oz,et al.  Δ9-Tetrahydrocannabinol and Endogenous Cannabinoid Anandamide Directly Potentiate the Function of Glycine Receptors , 2006, Molecular Pharmacology.

[195]  Signe í Stórustovu,et al.  Pharmacological Characterization of Agonists at δ-Containing GABAA Receptors: Functional Selectivity for Extrasynaptic Receptors Is Dependent on the Absence of γ2 , 2006, Journal of Pharmacology and Experimental Therapeutics.

[196]  U. Rudolph,et al.  GABA-based therapeutic approaches: GABAA receptor subtype functions. , 2006, Current opinion in pharmacology.

[197]  J. Gever,et al.  Purinoceptors as therapeutic targets for lower urinary tract dysfunction , 2006, British journal of pharmacology.

[198]  J. Lerma Kainate receptor physiology. , 2006, Current opinion in pharmacology.

[199]  N. Bowery,et al.  GABA and glycine as neurotransmitters: a brief history , 2006, British journal of pharmacology.

[200]  W. Sieghart Structure, pharmacology, and function of GABAA receptor subtypes. , 2006, Advances in pharmacology.

[201]  P. Paoletti,et al.  Relating NMDA Receptor Function to Receptor Subunit Composition: Limitations of the Pharmacological Approach , 2006, The Journal of Neuroscience.

[202]  E. Gouaux,et al.  Subunit arrangement and function in NMDA receptors , 2005, Nature.

[203]  J. A. Peters,et al.  Molecular determinants of single-channel conductance and ion selectivity in the Cys-loop family: insights from the 5-HT3 receptor. , 2005, Trends in pharmacological sciences.

[204]  D. Raines,et al.  General Anesthetic-Induced Channel Gating Enhancement of 5-Hydroxytryptamine Type 3 Receptors Depends on Receptor Subunit Composition , 2005, Journal of Pharmacology and Experimental Therapeutics.

[205]  B. Orser,et al.  Emerging molecular mechanisms of general anesthetic action. , 2005, Trends in pharmacological sciences.

[206]  Y. Munemoto,et al.  Cloning and expression of ligand-gated ion-channel receptor L2 in central nervous system. , 2005, Biochemical and biophysical research communications.

[207]  I. Martin,et al.  Atomic force microscopy reveals the stoichiometry and subunit arrangement of 5-HT3 receptors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[208]  N. Burnashev,et al.  Glycine Receptors in CNS Neurons as a Target for Nonretrograde Action of Cannabinoids , 2005, The Journal of Neuroscience.

[209]  M. Beato,et al.  Molecular determinants of glycine receptor αβ subunit sensitivities to Zn2+‐mediated inhibition , 2005 .

[210]  T. Liljefors,et al.  Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. , 2005, Journal of medicinal chemistry.

[211]  J. Lambert,et al.  Neurosteroids: endogenous regulators of the GABAA receptor , 2005, Nature Reviews Neuroscience.

[212]  U. Heinemann,et al.  RNA editing produces glycine receptor α3P185L, resulting in high agonist potency , 2005, Nature Neuroscience.

[213]  J. Gever,et al.  Antagonism of ATP responses at P2X receptor subtypes by the pH indicator dye, Phenol red , 2005, British journal of pharmacology.

[214]  G. Johnston GABA(A) receptor channel pharmacology. , 2005, Current pharmaceutical design.

[215]  D. Bertrand,et al.  A Novel Positive Allosteric Modulator of the α7 Neuronal Nicotinic Acetylcholine Receptor: In Vitro and In Vivo Characterization , 2005, The Journal of Neuroscience.

[216]  H. Tse,et al.  Synthesis and pharmacology of N1-substituted piperazine-2,3-dicarboxylic acid derivatives acting as NMDA receptor antagonists. , 2005, Journal of medicinal chemistry.

[217]  Heinrich Betz,et al.  The β Subunit Determines the Ligand Binding Properties of Synaptic Glycine Receptors , 2005, Neuron.

[218]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[219]  J. Kemp,et al.  Ionotropic and metabotropic glutamate receptor structure and pharmacology , 2005, Psychopharmacology.

[220]  E. Wong,et al.  Discovery and structure-activity relationship of quinuclidine benzamides as agonists of alpha7 nicotinic acetylcholine receptors. , 2005, Journal of medicinal chemistry.

[221]  M. Chebib GABAC RECEPTOR ION CHANNELS , 2004, Clinical and experimental pharmacology & physiology.

[222]  J. Lynch,et al.  Molecular structure and function of the glycine receptor chloride channel. , 2004, Physiological reviews.

[223]  I. Módy,et al.  Diversity of inhibitory neurotransmission through GABAA receptors , 2004, Trends in Neurosciences.

[224]  A. Conigrave,et al.  Chelerythrine and other benzophenanthridine alkaloids block the human P2X7 receptor , 2004, British journal of pharmacology.

[225]  C. Adkins,et al.  Salicylidene salicylhydrazide, a selective inhibitor of β1‐containing GABAA receptors , 2004, British journal of pharmacology.

[226]  D. Kullmann,et al.  Tonically active GABAA receptors: modulating gain and maintaining the tone , 2004, Trends in Neurosciences.

[227]  M. Kassack,et al.  Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. , 2004, European journal of medicinal chemistry.

[228]  T. Sixma,et al.  Nicotine and Carbamylcholine Binding to Nicotinic Acetylcholine Receptors as Studied in AChBP Crystal Structures , 2004, Neuron.

[229]  D. Donnelly-roberts,et al.  Mitogen-Activated Protein Kinase and Caspase Signaling Pathways Are Required for P2X7 Receptor (P2X7R)-Induced Pore Formation in Human THP-1 Cells , 2004, Journal of Pharmacology and Experimental Therapeutics.

[230]  H. Tse,et al.  Structure–activity analysis of a novel NR2C/NR2D‐preferring NMDA receptor antagonist: 1‐(phenanthrene‐2‐carbonyl) piperazine‐2,3‐dicarboxylic acid , 2004, British journal of pharmacology.

[231]  S. Fucile Ca2+ permeability of nicotinic acetylcholine receptors. , 2004, Cell calcium.

[232]  S. Traynelis,et al.  Glutamate receptor gating. , 2004, Critical reviews in neurobiology.

[233]  P. Das,et al.  The 5-HT3B subunit confers reduced sensitivity to picrotoxin when co-expressed with the 5-HT3A receptor. , 2003, Brain research. Molecular brain research.

[234]  M. Bianchi,et al.  Neurosteroids Shift Partial Agonist Activation of GABAA Receptor Channels from Low- to High-Efficacy Gating Patterns , 2003, The Journal of Neuroscience.

[235]  L. Fitzgerald,et al.  A cluster of novel serotonin receptor 3-like genes on human chromosome 3. , 2003, Gene.

[236]  R. North,et al.  Subunit Arrangement in P2X Receptors , 2003, The Journal of Neuroscience.

[237]  E. Sher,et al.  The nicotinic α4β2 receptor selective agonist, TC-2559, increases dopamine neuronal activity in the ventral tegmental area of rat midbrain slices , 2003, Neuropharmacology.

[238]  J. Tapia,et al.  Modulation of glycine-activated ion channel function by G-protein βγ subunits , 2003, Nature Neuroscience.

[239]  E. Kirkness,et al.  A cytoplasmic region determines single-channel conductance in 5-HT3 receptors , 2003, Nature.

[240]  P. Seeburg,et al.  Regulation of ion channel/neurotransmitter receptor function by RNA editing , 2003, Current Opinion in Neurobiology.

[241]  J. Kapeller,et al.  Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. , 2003, Gene.

[242]  M. Yuzaki The δ2 glutamate receptor: 10 years later , 2003, Neuroscience Research.

[243]  E. Kirkness,et al.  Introduction of the 5-HT3B subunit alters the functional properties of 5-HT3 receptors native to neuroblastoma cells , 2003, Neuropharmacology.

[244]  Paul A Davies,et al.  A Novel Class of Ligand-gated Ion Channel Is Activated by Zn2+ * , 2003, The Journal of Biological Chemistry.

[245]  T. Brennan,et al.  A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[246]  T. Liljefors,et al.  Specific GABA(A) agonists and partial agonists. , 2002, Chemical record.

[247]  Heinrich Betz,et al.  Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? , 2002, Trends in pharmacological sciences.

[248]  P. Whiting,et al.  Overexpression of the GABAA receptor ε subunit results in insensitivity to anaesthetics , 2002, Neuropharmacology.

[249]  P. Whiting,et al.  Pharmacological characterization of a novel cell line expressing human α4β3δ GABAA receptors , 2002 .

[250]  T. Liljefors,et al.  GABA(A) receptor ligands and their therapeutic potentials. , 2002, Current topics in medicinal chemistry.

[251]  J. Fisher Amiloride Inhibition of γ-Aminobutyric AcidAReceptors Depends upon the α Subunit Subtype , 2002 .

[252]  Gerhard Gründer,et al.  Drug interactions at GABAA receptors , 2002, Progress in Neurobiology.

[253]  Y. Auberson,et al.  5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. , 2002, Bioorganic & medicinal chemistry letters.

[254]  C. Kindler,et al.  The Potency of New Muscle Relaxants on Recombinant Muscle-Type Acetylcholine Receptors , 2002, Anesthesia and analgesia.

[255]  Hiroto Takahashi,et al.  Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits , 2002, Nature.

[256]  D. Farb,et al.  Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids , 2002, British journal of pharmacology.

[257]  I. Stanford,et al.  Pharmacological comparison of human homomeric 5-HT3A receptors versus heteromeric 5-HT3A/3B receptors , 2001, Neuropharmacology.

[258]  R. Papke,et al.  Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes. , 2001, The Journal of pharmacology and experimental therapeutics.

[259]  S. Moss,et al.  Constructing inhibitory synapses , 2001, Nature Reviews Neuroscience.

[260]  Z. Pan,et al.  Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. , 2001, Trends in pharmacological sciences.

[261]  B S Khakh,et al.  International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. , 2001, Pharmacological reviews.

[262]  P. Bregestovski,et al.  Fast Potentiation of Glycine Receptor Channels by Intracellular Calcium in Neurons and Transfected Cells , 2000, Neuron.

[263]  H. Bönisch,et al.  Modified 5-HT3A receptor function by co-expression of alternatively spliced human 5-HT3A receptor isoforms , 2000, Naunyn-Schmiedeberg's Archives of Pharmacology.

[264]  J. Trudell,et al.  Specific binding sites for alcohols and anesthetics on ligand-gated ion channels. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[265]  Toru Watanabe,et al.  Cloning, expression, and characterization of ferret 5-HT3 receptor subunit , 2000 .

[266]  E. Kirkness,et al.  Evidence for Expression of Heteromeric Serotonin 5‐HT3 Receptors in Rodents , 2000, Journal of neurochemistry.

[267]  R. North,et al.  Brilliant blue G selectively blocks ATP-gated rat P2X(7) receptors. , 2000, Molecular pharmacology.

[268]  R. Papke,et al.  The Activation and Inhibition of Human Nicotinic Acetylcholine Receptor by RJR‐2403 Indicate a Selectivity for the α4β2 Receptor Subtype , 2000 .

[269]  H. Tse,et al.  Glutamate receptor ion channels : Activators and inhibitors , 2000 .

[270]  G Burnstock,et al.  Diinosine pentaphosphate (IP5I) is a potent antagonist at recombinant rat P2X1 receptors , 1999, British journal of pharmacology.

[271]  C. Glass,et al.  The Pharmacological and Functional Characteristics of the Serotonin 5-HT3A Receptor Are Specifically Modified by a 5-HT3B Receptor Subunit* , 1999, The Journal of Biological Chemistry.

[272]  B S Khakh,et al.  Allosteric Control of Gating and Kinetics at P2X4Receptor Channels , 1999, The Journal of Neuroscience.

[273]  P. Whiting,et al.  Mutation at the putative GABAA ion‐channel gate reveals changes in allosteric modulation , 1999, British journal of pharmacology.

[274]  M. P. Blanton,et al.  Characterization of interaction of 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester with Torpedo californica nicotinic acetylcholine receptor and 5-hydroxytryptamine3 receptor. , 1999, The Journal of pharmacology and experimental therapeutics.

[275]  J P Changeux,et al.  International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. , 1999, Pharmacological reviews.

[276]  S. Mochizuki,et al.  Identification of a domain affecting agonist potency of meta-chlorophenylbiguanide in 5-HT3 receptors. , 1999, European journal of pharmacology.

[277]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[278]  W. Stühmer,et al.  Antagonistic properties of the suramin analogue NF023 at heterologously expressed P2X receptors , 1999, Neuropharmacology.

[279]  John A. Peters,et al.  The 5-HT3B subunit is a major determinant of serotonin-receptor function , 1999, Nature.

[280]  S. Traynelis,et al.  Control of Voltage-independent Zinc Inhibition of Nmda Receptors by the Nr1 Subunit , 2022 .

[281]  G. Burnstock,et al.  A pyridoxine cyclic phosphate and its 6-azoaryl derivative selectively potentiate and antagonize activation of P2X1 receptors. , 1998, Journal of medicinal chemistry.

[282]  R. North,et al.  Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. , 1998, Molecular pharmacology.

[283]  A. Nicke,et al.  P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand‐gated ion channels , 1998, The EMBO journal.

[284]  E A Barnard,et al.  International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. , 1998, Pharmacological reviews.

[285]  S. Moss,et al.  Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors , 1998, The Journal of physiology.

[286]  R. Rupprecht,et al.  Molecular cloning, functional expression, and pharmacological characterization of 5-hydroxytryptamine3 receptor cDNA and its splice variants from guinea pig. , 1998, Molecular pharmacology.

[287]  C. Gargett,et al.  The isoquinoline derivative KN‐62 a potent antagonist of the P2Z‐receptor of human lymphocytes , 1997, British journal of pharmacology.

[288]  R. Macdonald,et al.  Contrasting actions of lanthanum on different recombinant gamma-aminobutyric acid receptor isoforms expressed in L929 fibroblasts. , 1997, Molecular pharmacology.

[289]  D. Bertrand,et al.  Human α4β2 Neuronal Nicotinic Acetylcholine Receptor in HEK 293 Cells: A Patch-Clamp Study , 1996, The Journal of Neuroscience.

[290]  N. Barnes,et al.  Autoradiographic distribution of [3H]-(S)-zacopride-labelled 5-HT3 receptors in human brain , 1996, Journal of the Neurological Sciences.

[291]  Angus M. Brown,et al.  Characterization of a human 5‐hydroxytryptamine3 receptor type A (h5‐HT3R‐AS) subunit stably expressed in HEK 293 cells , 1996, British journal of pharmacology.

[292]  T. Kuner,et al.  Multiple Structural Elements Determine Subunit Specificity of Mg2+ Block in NMDA Receptor Channels , 1996, The Journal of Neuroscience.

[293]  N. Barnes,et al.  Allosteric modulation of 5-HT3 receptors: focus on alcohols and anaesthetic agents. , 1996, Trends in pharmacological sciences.

[294]  R. North,et al.  An antagonist‐insensitive P2X receptor expressed in epithelia and brain. , 1996, The EMBO journal.

[295]  T. Blackburn,et al.  Cloning and functional expression of a human 5-hydroxytryptamine type 3AS receptor subunit. , 1995, Molecular pharmacology.

[296]  S. Mochizuki,et al.  Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. , 1995, Molecular pharmacology.

[297]  N. Chau,et al.  Evidence that [3H]‐α,β‐methylene ATP may label an endothelial‐derived cell line 5′‐nucleotidase with high affinity , 1995 .

[298]  A. IJzerman,et al.  Pharmacological analysis of ecto‐ATPase inhibition: evidence for combined enzyme inhibition and receptor antagonism in P2X‐purinoceptor ligands , 1994, British journal of pharmacology.

[299]  P P Humphrey,et al.  International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). , 1994, Pharmacological reviews.

[300]  K. Isenberg,et al.  Partial cDNA cloning and NGF regulation of a rat 5-HT3 receptor subunit. , 1993, Neuroreport.

[301]  J. A. Peters,et al.  Cloning and functional expression of an apparent splice variant of the murine 5-HT3 receptor A subunit. , 1993, European journal of pharmacology.

[302]  J. Kleinman,et al.  Pharmacological and Regional Characterization of [3H]LY278584 Binding Sites in Human Brain , 1993, Journal of neurochemistry.

[303]  R. Myers,et al.  Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. , 1991, Science.

[304]  Burton S. Rosner,et al.  Neuropharmacology , 1958, Nature.

[305]  Monica Nordberg,et al.  Pharmacology , 1941, The Indian Medical Gazette.