Probability of knots in a polymer ring

We generate equilibrium configurations of a ring polymer in an infinite space, or confined to the interior of a sphere. Using a new algorithm, the a priori probability for the occurence of a knot is determined numerically. The results are compatible with power laws and scaling laws of striking simplicity.

[1]  Yi-der Chen,et al.  Monte Carlo study of freely jointed ring polymers. II. The writhing number , 1981 .

[2]  Yi-der Chen,et al.  Monte Carlo study of freely jointed ring polymers. I. Generation of ring polymers by dimerization method , 1981 .

[3]  H. Frisch,et al.  Statistical Mechanics of a Simple Entanglement , 1967 .

[4]  F. W. Wiegel Entanglement probabilities for a harmonically bound macromolecule , 1977 .

[5]  Topological shifts in the Aharonov-Bohm effect , 1980 .

[6]  A. V. Lukashin,et al.  Statistical mechanics and topology of polymer chains , 1975, Nature.

[7]  F. W. Wiegel,et al.  Simulation of a lipid monolayer using molecular dynamics , 1980, Nature.

[8]  J. D. Cloizeaux,et al.  The Lagrangian theory of polymer solutions at intermediate concentrations , 1975 .

[9]  Marc Le Bret,et al.  Monte carlo computation of the supercoiling energy, the sedimentation constant, and the radius of gyration of unknotted and knotted circular DNA , 1980, Biopolymers.

[10]  J. D. Cloizeaux,et al.  Lagrangian theory for a self-avoiding random chain , 1974 .

[11]  Yi-der Chen,et al.  Monte Carlo study of freely jointed ring polymers. III. The generation of undistorted perfect ring polymers , 1981 .

[12]  M. L. Mehta,et al.  Topological constraints on polymer rings and critical indices , 1979 .

[13]  G M Crippen Topology of globular proteins. II. , 1975, Journal of theoretical biology.

[14]  G. W. Roberts,et al.  Topological consideration in the theory of replication of DNA , 1978, Journal of mathematical biology.

[15]  Path integrals with topological constraints: Aharonov-Bohm effect and polymer entanglements , 1981 .

[16]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[17]  J.P.J. Michels,et al.  The self-diffusion coefficient in the gas phase at moderate densities, obtained by computer simulations , 1978 .

[18]  The statistics of superhelicity. , 1978, Journal of molecular biology.

[19]  P. G. de Gennes,et al.  Exponents for the excluded volume problem as derived by the Wilson method , 1972 .

[20]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[21]  Markovian nature of the two-dimensional self-avoiding random walk problem , 1979 .

[22]  Path integrals with a periodic constraint: Entangled strings , 1978 .

[23]  N. Sait̂o,et al.  Statistics of a random coil chain in the presence of a point (two-dimensional case) or line (three-dimensional case) obstacle , 1973 .