List Edge Coloring of Outer-1-planar Graphs

A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the outer face and each edge is crossed at most once. It is known that the list edge chromatic number Χ′ l ( G ) of any outer-1-planar graph G with maximum degree Δ( G ) ≥ 5 is exactly its maximum degree. In this paper, we prove Χ′ l ( G ) = Δ( G ) for outer-1-planar graphs G with Δ( G ) = 4 and with the crossing distance being at least 3.

[1]  Carsten Thomassen,et al.  Rectilinear drawings of graphs , 1988, J. Graph Theory.

[2]  Noga Alon,et al.  The Polynomial Method and Restricted Sums of Congruence Classes , 1996 .

[3]  Ko-Wei Lih,et al.  Choosability, Edge Choosability, and Total Choosability of Outerplane Graphs , 2001, Eur. J. Comb..

[4]  Xin Zhang,et al.  List total coloring of pseudo-outerplanar graphs , 2013, Discret. Math..

[5]  Douglas R. Woodall,et al.  Edge and Total Choosability of Near-Outerplanar Graphs , 2006, Electron. J. Comb..

[6]  Xin Zhang The edge chromatic number of outer-1-planar graphs , 2016, Discret. Math..

[7]  Xin Zhang,et al.  Pseudo-outerplanar graphs and chromatic conjectures , 2014, Ars Comb..

[8]  Xin Zhang,et al.  Total coloring of outer-1-planar graphs with near-independent crossings , 2017, J. Comb. Optim..

[9]  Xiao Zhou,et al.  List Edge-Colorings of Series-Parallel Graphs , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[10]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[11]  Guizhen Liu,et al.  Edge covering pseudo-outerplanar graphs with forests , 2011, Discret. Math..

[12]  R. M. R. Lewis,et al.  Guide to Graph Colouring: Algorithms and Applications , 2015, Texts in Computer Science.

[13]  W Wang,et al.  -MATCHING AND EDGE-FACE CHROMATIC NUMBERS , 1999 .

[14]  Alexandr V. Kostochka,et al.  List Edge and List Total Colourings of Multigraphs , 1997, J. Comb. Theory B.

[15]  D. Král,et al.  Coloring plane graphs with independent crossings , 2010 .

[16]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.