A semiparametric method for predicting bankruptcy

Bankruptcy prediction methods based on a semiparametric logit model are proposed for simple random (prospective) and case-control (choice-based; retrospective) data. The unknown parameters and prediction probabilities in the model are estimated by the local likelihood approach, and the resulting estimators are analyzed through their asymptotic biases and variances. The semiparametric bankruptcy prediction methods using these two types of data are shown to be essentially equivalent. Thus our proposed prediction model can be directly applied to data sampled from the two important designs. One real data example and simulations confirm that our prediction method is more powerful than alternatives, in the sense of yielding smaller out-of-sample error rates. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  Simon N. Wood,et al.  Generalized Additive Models , 2006, Annual Review of Statistics and Its Application.

[2]  Wolfgang Härdle,et al.  Graphical Data Representation in Bankruptcy Analysis , 2006 .

[3]  Rodney X. Sturdivant,et al.  Applied Logistic Regression: Hosmer/Applied Logistic Regression , 2005 .

[4]  Sreedhar T. Bharath,et al.  Forecasting Default with the Kmv-Merton Model , 2004 .

[5]  R. Jarrow,et al.  Bankruptcy Prediction With Industry Effects , 2004 .

[6]  Yuhang Xing,et al.  Default Risk in Equity Returns , 2004 .

[7]  Thomas E. McKee Rough sets bankruptcy prediction models versus auditor signalling rates , 2003 .

[8]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[9]  F. T. Magiera Forecasting Bankruptcy More Accurately: A Simple Hazard Model , 2001 .

[10]  Hian Chye Koh,et al.  A neural network approach to the prediction of going concern status , 1999 .

[11]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[12]  Susan G. Watts,et al.  Bankruptcy classification errors in the 1980s: An empirical analysis of Altman's and Ohlson's models , 1996 .

[13]  L. P. Zhao,et al.  Estimating relative risk functions in case-control studies using a nonparametric logistic regression. , 1996, American journal of epidemiology.

[14]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[15]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[16]  M. Lejeune,et al.  Smooth estimators of distribution and density functions , 1992 .

[17]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[18]  James V. Hansen,et al.  Inducing rules for expert system development: an example using default and bankruptcy data , 1988 .

[19]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[20]  W. R. Lane,et al.  An application of the cox proportional hazards model to bank failure , 1986 .

[21]  D. Cox,et al.  Analysis of Survival Data. , 1985 .

[22]  H. Frydman,et al.  Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress , 1985 .

[23]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[24]  James A. Ohlson FINANCIAL RATIOS AND THE PROBABILISTIC PREDICTION OF BANKRUPTCY , 1980 .

[25]  R. Pyke,et al.  Logistic disease incidence models and case-control studies , 1979 .

[26]  V. T. Farewell,et al.  Some results on the estimation of logistic models based on retrospective data , 1979 .

[27]  Edward I. Altman,et al.  FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND THE PREDICTION OF CORPORATE BANKRUPTCY , 1968 .

[28]  Michael T. Dugan,et al.  The Limitations of Bankruptcy Prediction Models: Some Cautions for the Researcher , 2001 .

[29]  Jianqing Fan,et al.  Fast Implementations of Nonparametric Curve Estimators , 1994 .

[30]  Michael Brockman,et al.  Local polynomial fitting: A standard for nonparametric regression , 1993 .

[31]  A. Tsybakov,et al.  Bandwidth Choice for Average Derivative Estimation , 1992 .

[32]  W. Härdle Smoothing Techniques: With Implementation in S , 1991 .

[33]  J. Steindl The Pareto Distribution , 1990 .

[34]  M. Zmijewski METHODOLOGICAL ISSUES RELATED TO THE ESTIMATION OF FINANCIAL DISTRESS PREDICTION MODELS , 1984 .