Trends in Satellite Earth Observation for Permafrost Related Analyses - A Review

Climate change and associated Arctic amplification cause a degradation of permafrost which in turn has major implications for the environment. The potential turnover of frozen ground from a carbon sink to a carbon source, eroding coastlines, landslides, amplified surface deformation and endangerment of human infrastructure are some of the consequences connected with thawing permafrost. Satellite remote sensing is hereby a powerful tool to identify and monitor these features and processes on a spatially explicit, cheap, operational, long-term basis and up to circum-Arctic scale. By filtering after a selection of relevant keywords, a total of 325 articles from 30 international journals published during the last two decades were analyzed based on study location, spatio-temporal resolution of applied remote sensing data, platform, sensor combination and studied environmental focus for a comprehensive overview of past achievements, current efforts, together with future challenges and opportunities. The temporal development of publication frequency, utilized platforms/sensors and the addressed environmental topic is thereby highlighted. The total number of publications more than doubled since 2015. Distinct geographical study hot spots were revealed, while at the same time large portions of the continuous permafrost zone are still only sparsely covered by satellite remote sensing investigations. Moreover, studies related to Arctic greenhouse gas emissions in the context of permafrost degradation appear heavily underrepresented. New tools (e.g., Google Earth Engine (GEE)), methodologies (e.g., deep learning or data fusion etc.) and satellite data (e.g., the Methane Remote Sensing LiDAR Mission (Merlin) and the Sentinel-fleet) will thereby enable future studies to further investigate the distribution of permafrost, its thermal state and its implications on the environment such as thermokarst features and greenhouse gas emission rates on increasingly larger spatial and temporal scales.

[1]  B. Etzelmüller,et al.  CryoGRID 1.0: Permafrost Distribution in Norway estimated by a Spatial Numerical Model , 2013 .

[2]  Guido Grosse,et al.  Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions , 2009 .

[3]  Kristofer D. Johnson,et al.  Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions , 2015 .

[4]  B. Wylie,et al.  Spatial variability and landscape controls of near‐surface permafrost within the Alaskan Yukon River Basin , 2014 .

[5]  Lin Liu,et al.  Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska Using Interferometric Synthetic Aperture Radar , 2015, Remote. Sens..

[6]  Martin Wirth,et al.  MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane , 2017, Remote. Sens..

[7]  Alexander Brenning,et al.  Thermal remote sensing of ice-debris landforms using ASTER: an example from the Chilean Andes , 2012 .

[8]  Claudia Notarnicola,et al.  An Unsupervised Method to Detect Rock Glacier Activity by Using Sentinel-1 SAR Interferometric Coherence: A Regional-Scale Study in the Eastern European Alps , 2019, Remote. Sens..

[9]  Bo Zhang,et al.  Active Layer Thickness Retrieval of Qinghai–Tibet Permafrost Using the TerraSAR-X InSAR Technique , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  John S. Kimball,et al.  Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions , 2014 .

[11]  Meixue Yang,et al.  Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research , 2010 .

[12]  Tobias Ullmann,et al.  Assessing Spatiotemporal Variations of Landsat Land Surface Temperature and Multispectral Indices in the Arctic Mackenzie Delta Region between 1985 and 2018 , 2019, Remote. Sens..

[13]  Fangfang Yao,et al.  Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium , 2018, Environmental Research Letters.

[14]  Hui Lin,et al.  Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China , 2013 .

[15]  Guido Grosse,et al.  Recent Arctic tundra fire initiates widespread thermokarst development , 2015, Scientific Reports.

[16]  Lei Huang,et al.  Mapping Thermokarst Lakes on the Qinghai–Tibet Plateau Using Nonlocal Active Contours in Chinese GaoFen-2 Multispectral Imagery , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  T. Schmid,et al.  Insights into deglaciation of the largest ice-free area in the South Shetland Islands (Antarctica) from quantitative analysis of the drainage system , 2014 .

[18]  Nuno Carvalhais,et al.  Codominant water control on global interannual variability and trends in land surface phenology and greenness , 2015, Global change biology.

[19]  Vladimir E. Romanovsky,et al.  Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements , 2009 .

[20]  Anna Liljedahl,et al.  Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology , 2016 .

[21]  Jun Hu,et al.  Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling , 2016 .

[22]  F. Costard,et al.  Satellite image analysis and frozen cylinder experiments on thermal erosion of periglacial fluvial islands , 2018 .

[23]  Brian Brisco,et al.  RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada , 2014 .

[24]  O. Sonnentag,et al.  Regional atmospheric cooling and wetting effect of permafrost thaw‐induced boreal forest loss , 2016, Global change biology.

[25]  Xiaodong Wu,et al.  Modeling ground surface temperature by means of remote sensing data in high-altitude areas: test in the central Tibetan Plateau with application of moderate-resolution imaging spectroradiometer Terra/Aqua land surface temperature and ground-based infrared radiometer , 2014 .

[26]  J. Canadell,et al.  Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources , 2020, Environmental Research Letters.

[27]  Zhen Li,et al.  Analysis of deformation over permafrost regions of Qinghai-Tibet plateau based on permanent scatterers , 2010 .

[28]  Irena Hajnsek,et al.  Identification of Soil Freezing and Thawing States Using SAR Polarimetry at C-Band , 2014, Remote. Sens..

[29]  Juha Hyyppä,et al.  Arctic Mackenzie Delta channel planform evolution during 1983–2013 utilising Landsat data and hydrological time series , 2017 .

[30]  X. Chang,et al.  Effects of forest fires on the permafrost environment in the northern Da Xing'anling (Hinggan) mountains, Northeast China , 2019, Permafrost and Periglacial Processes.

[31]  G. Grosse,et al.  Variability in Rates of Coastal Change Along the Yukon Coast, 1951 to 2015 , 2018 .

[32]  B. Jones,et al.  Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska , 2020, Permafrost and Periglacial Processes.

[33]  Yasushi Yamaguchi,et al.  Climate-Induced Extreme Hydrologic Events in the Arctic , 2016, Remote. Sens..

[34]  M. R. Francelino,et al.  Distribution and characterization of soils and landform relationships in Byers Peninsula, Livingston Island, Maritime Antarctica , 2012 .

[35]  J. Ehn,et al.  Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean) and implications for ocean colour remote sensing , 2012 .

[36]  K. Zhao,et al.  A continuous global record of near-surface soil freeze/thaw status from AMSR-E and AMSR2 data , 2019, International Journal of Remote Sensing.

[37]  Fujun Niu,et al.  Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China. , 2017, The Science of the total environment.

[38]  J. L. Sollid,et al.  Permafrost in Svalbard: a review of research history, climatic background and engineering challenges , 2003 .

[39]  Gaohuan Liu,et al.  Accuracy Evaluation and Consistency Analysis of Four Global Land Cover Products in the Arctic Region , 2019, Remote. Sens..

[40]  Scott J Goetz,et al.  Spatiotemporal remote sensing of ecosystem change and causation across Alaska , 2018, Global change biology.

[41]  Douglas J. King,et al.  Estimating the extent of near‐surface permafrost using remote sensing, Mackenzie Delta, Northwest Territories , 2009 .

[42]  Andreas Wiesmann,et al.  Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment , 2015 .

[43]  H. Birks,et al.  Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity , 2013, Nature Communications.

[44]  Guido Grosse,et al.  Remote Sensing of Landscape Change in Permafrost Regions , 2016 .

[45]  D. Lawrence,et al.  Diagnosing Present and Future Permafrost from Climate Models , 2012 .

[46]  C. Voss,et al.  The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds , 2018 .

[47]  C. Kinnard,et al.  Geomorphology, internal structure, and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro Tapado, upper Elqui Valley, 30°08′ S., 69°55′ W.) , 2014 .

[48]  Yury Dvornikov,et al.  Microrelief Associated with Gas Emission Craters: Remote-Sensing and Field-Based Study , 2018, Remote. Sens..

[49]  P. Wadhams,et al.  Climate science: Vast costs of Arctic change , 2013, Nature.

[50]  Matthias Jakob,et al.  Periglacial Geohazard Risks and Ground Temperature Increases , 2015 .

[51]  Xin Li,et al.  Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[52]  G. Hugelius,et al.  Soil organic carbon pools in a periglacial landscape: a case study from the central Canadian Arctic , 2010 .

[53]  Jing Luo,et al.  Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: An example from the Beiluhe Region , 2019, Geomorphology.

[54]  C. Andresen,et al.  Disappearing Arctic tundra ponds: Fine‐scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948–2013) , 2015 .

[55]  H. Lantuit,et al.  Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean , 2018 .

[56]  M. A. Haq,et al.  Study of permafrost distribution in Sikkim Himalayas using Sentinel-2 satellite images and logistic regression modelling , 2019, Geomorphology.

[57]  L. Ogden,et al.  Changing Lake Dynamics Indicate a Drier Arctic in Western Greenland , 2019, Journal of Geophysical Research: Biogeosciences.

[58]  L. Leung,et al.  Improving Land Surface Temperature Simulation in CoLM Over the Tibetan Plateau Through Fractional Vegetation Cover Derived From a Remotely Sensed Clumping Index and Model‐Simulated Leaf Area Index , 2019, Journal of Geophysical Research: Atmospheres.

[59]  Yuri Shur,et al.  Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes , 2013 .

[60]  G. Schaepman‐Strub,et al.  Arctic shrub effects on NDVI, summer albedo and soil shading , 2014 .

[61]  Guido Grosse,et al.  PeRL: a circum-Arctic Permafrost Region Pond and Lake database , 2016 .

[62]  Alan R. Gillespie,et al.  Toward the Detection of Permafrost Using Land-Surface Temperature Mapping , 2020, Remote. Sens..

[63]  Chao Wang,et al.  Seasonal deformation features on Qinghai-Tibet railway observed using time-series InSAR technique with high-resolution TerraSAR-X images , 2017 .

[64]  S. Lamoureux,et al.  Spatial Variability of Dissolved Organic Carbon, Solutes, and Suspended Sediment in Disturbed Low Arctic Coastal Watersheds , 2020, Journal of Geophysical Research: Biogeosciences.

[65]  Tazio Strozzi,et al.  Detecting and quantifying mountain permafrost creep from in situ inventory, space-borne radar interferometry and airborne digital photogrammetry , 2004 .

[66]  P. M. Lang,et al.  Observational constraints on recent increases in the atmospheric CH4 burden , 2009 .

[67]  Yoshio Yamaguchi,et al.  Monitoring freeze/thaw cycles using ENVISAT ASAR Global Mode , 2011 .

[68]  Wayne H. Pollard,et al.  The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines , 2012, Estuaries and Coasts.

[69]  Richard H. Chen,et al.  Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska. , 2017, The cryosphere.

[70]  Charlotte Young Above , 2003, Definitions.

[71]  Claudia Kuenzer,et al.  Global WaterPack – A 250 m resolution dataset revealing the daily dynamics of global inland water bodies , 2017 .

[72]  Urs Wegmüller,et al.  Sentinel-1 SAR Interferometry for Surface Deformation Monitoring in Low-Land Permafrost Areas , 2018, Remote. Sens..

[73]  Y. Yamaguchi,et al.  A monthly stream flow model for estimating the potential changes of river runoff on the projected global warming , 2000 .

[74]  Julia Boike,et al.  Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Svalbard, Norway , 2012 .

[75]  Jan Hjort,et al.  Degrading permafrost puts Arctic infrastructure at risk by mid-century , 2018, Nature Communications.

[76]  B. Elberling,et al.  Contrasting temperature trends across the ice-free part of Greenland , 2018, Scientific Reports.

[77]  E. A. Grishakina,et al.  Cliff retreat of permafrost coast in south‐west Baydaratskaya Bay, Kara Sea, during 2005–2016 , 2019, Permafrost and Periglacial Processes.

[78]  John Rogan,et al.  Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery , 2011 .

[79]  Birgit Heim,et al.  Water Body Distributions Across Scales: A Remote Sensing Based Comparison of Three Arctic Tundra Wetlands , 2013, Remote. Sens..

[80]  H. Tian,et al.  Large methane emission upon spring thaw from natural wetlands in the northern permafrost region , 2012 .

[81]  Andreas Kääb,et al.  Remote sensing of permafrost‐related problems and hazards , 2008 .

[82]  Yury Dvornikov,et al.  Comparison of Gas Emission Crater Geomorphodynamics on Yamal and Gydan Peninsulas (Russia), Based on Repeat Very-High-Resolution Stereopairs , 2017, Remote. Sens..

[83]  E. Rojan,et al.  Late Holocene development of Lake Rangkul (Eastern Pamir, Tajikistan) and its response to regional climatic changes , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[84]  G. Hugelius,et al.  Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution , 2015 .

[85]  Masoud Mahdianpari,et al.  Monitoring surface changes in discontinuous permafrost terrain using small baseline SAR interferometry, object-based classification, and geological features: a case study from Mayo, Yukon Territory, Canada , 2018, GIScience & Remote Sensing.

[86]  Matthew Kupilik,et al.  Gaussian Process Regression for Arctic Coastal Erosion Forecasting , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[87]  M. Flannigan,et al.  Wildfire as a major driver of recent permafrost thaw in boreal peatlands , 2018, Nature Communications.

[88]  Bernd Etzelmüller,et al.  A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data , 2015 .

[89]  S. Natali,et al.  Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape , 2016 .

[90]  R. Suzuki,et al.  Flux variation in a Siberian taiga forest near Yakutsk estimated by a one‐dimensional model with routine data, 1986–2000 , 2007 .

[91]  M. Langer,et al.  Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard — Implications for MODIS LST based permafrost monitoring , 2011 .

[92]  J. Dash,et al.  A refined mapping of Arctic lakes using Landsat imagery , 2015 .

[93]  R. Armstrong,et al.  Regional-scale modeling of soil freeze/thaw over the Arctic drainage basin , 2003 .

[94]  Pedro Pina,et al.  Monitoring recent changes of vegetation in Fildes Peninsula (King George Island, Antarctica) through satellite imagery guided by UAV surveys. , 2019, The Science of the total environment.

[95]  J. Hartmann,et al.  Toward understanding the contribution of waterbodies to the methane emissions of a permafrost landscape on a regional scale—A case study from the Mackenzie Delta, Canada , 2018, Global change biology.

[96]  P. Kuhry,et al.  Warming‐induced destabilization of peat plateau/thermokarst lake complexes , 2011 .

[97]  Sergey V. Samsonov,et al.  Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar , 2015 .

[98]  Ingmar Nitze,et al.  Reduced arctic tundra productivity linked with landform and climate change interactions , 2018, Scientific Reports.

[99]  Vladimir E. Romanovsky,et al.  Alaskan Permafrost Groundwater Storage Changes Derived from GRACE and Ground Measurements , 2011, Remote. Sens..

[100]  Dylan B. A. Jones,et al.  Satellite observations of CO2 from a highly elliptical orbit for studies of the Arctic and boreal carbon cycle , 2014 .

[101]  M. Torre Jorgenson,et al.  Remote sensing and field‐based mapping of permafrost distribution along the Alaska Highway corridor, interior Alaska , 2010 .

[102]  Mingsheng Liao,et al.  Expressway deformation mapping using high-resolution TerraSAR-X images , 2014 .

[103]  G. Frost,et al.  Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s , 2014, Global change biology.

[104]  Bruce K. Wylie,et al.  Extending Airborne Electromagnetic Surveys for Regional Active Layer and Permafrost Mapping with Remote Sensing and Ancillary Data, Yukon Flats Ecoregion, Central Alaska , 2013 .

[105]  Mika Aurela,et al.  Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide , 2017, Global change biology.

[106]  Feng Sheng Hu,et al.  Automated detection of thermoerosion in permafrost ecosystems using temporally dense Landsat image stacks , 2019, Remote Sensing of Environment.

[107]  Hong Zhang,et al.  Permafrost Soil Moisture Monitoring Using Multi-Temporal TerraSAR-X Data in Beiluhe of Northern Tibet, China , 2018, Remote. Sens..

[108]  Franz J. Meyer,et al.  InSAR Detection and Field Evidence for Thermokarst after a Tundra Wildfire, Using ALOS-PALSAR , 2016, Remote. Sens..

[109]  Julia Boike,et al.  Satellite-derived changes in the permafrost landscape of central Yakutia, 2000-2011: wetting, drying, and fires (documentation files) , 2015 .

[110]  Zhongqiong Zhang,et al.  PIC v1.3: comprehensive R package for computing permafrost indices with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau , 2018, Geoscientific Model Development.

[111]  Trevor C. Lantz,et al.  Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon , 2015 .

[112]  Ingmar Nitze,et al.  Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks , 2016 .

[113]  Jian Guo,et al.  The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. , 2009 .

[114]  Gerhard Ehret,et al.  MERLIN (Methane Remote Sensing Lidar Mission): an Overview , 2016 .

[115]  Marius Necsoiu,et al.  Rock glacier dynamics in Southern Carpathian Mountains from high-resolution optical and multi-temporal SAR satellite imagery , 2016 .

[116]  Bo Elberling,et al.  Net regional methane sink in High Arctic soils of northeast Greenland , 2015 .

[117]  Tingjun Zhang,et al.  A model study of circum‐Arctic soil temperatures , 2004 .

[118]  Guido Grosse,et al.  Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions , 2019, Remote. Sens..

[119]  R. Engstrom,et al.  Land cover and land use changes in the oil and gas regions of Northwestern Siberia under changing climatic conditions , 2015 .

[120]  David A. Robinson,et al.  Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty , 2010 .

[121]  D. Lawrence,et al.  Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics , 2015, Proceedings of the National Academy of Sciences.

[122]  Eirik Malnes,et al.  Freeze/thaw conditions at periglacial landforms in Kapp Linné, Svalbard, investigated using field observations, in situ, and radar satellite monitoring , 2017 .

[123]  Ke Zhang,et al.  Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth , 2012 .

[124]  Benjamin M. Jones,et al.  Transferability of the Deep Learning Mask R-CNN Model for Automated Mapping of Ice-Wedge Polygons in High-Resolution Satellite and UAV Images , 2020, Remote. Sens..

[125]  Claude R. Duguay,et al.  Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain , 2011 .

[126]  M. Carroll,et al.  The sign, magnitude and potential drivers of change in surface water extent in Canadian tundra , 2018 .

[127]  Annett Bartsch,et al.  Active-layer thickness estimation from X-band SAR backscatter intensity , 2016 .

[128]  Lado W. Kenyi,et al.  Estimation of rock glacier surface deformation using SAR interferometry data , 2003, IEEE Trans. Geosci. Remote. Sens..

[129]  Sabine Chabrillat,et al.  Spectral characterization of periglacial surfaces and geomorphological units in the Arctic Lena Delta using field spectrometry and remote sensing , 2009 .

[130]  Brigitte Leblon,et al.  Modelling and mapping permafrost at high spatial resolution using Landsat and Radarsat images in northern Ontario, Canada: part 1 – model calibration , 2016 .

[131]  Trevor C. Lantz,et al.  Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic , 2016 .

[132]  Edward J. Kim,et al.  A yearlong comparison of plot‐scale and satellite footprint‐scale 19 and 37 GHz brightness of the Alaskan North Slope , 2003 .

[133]  Chris Derksen,et al.  Numerical Terradynamic Simulation Group 8-2015 New satellite climate data records indicate strong coupling between recent frozen season changes and snow cover over high northern latitudes , 2018 .

[134]  Q. Zhuang,et al.  Quantifying the Effects of Snowpack on Soil Thermal and Carbon Dynamics of the Arctic Terrestrial Ecosystems , 2018 .

[135]  S. Goetz,et al.  Siberian tundra ecosystem vegetation and carbon stocks four decades after wildfire , 2014 .

[136]  Jing M. Chen,et al.  Mapping evapotranspiration based on remote sensing: An application to Canada's landmass , 2003 .

[137]  F. Chapin,et al.  Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions , 2004 .

[138]  Fulong Chen,et al.  Quantification of Temporal Decorrelation in X-, C-, and L-Band Interferometry for the Permafrost Region of the Qinghai–Tibet Plateau , 2017, IEEE Geoscience and Remote Sensing Letters.

[139]  A. Matsuoka,et al.  Towards an assessment of riverine dissolved organic carbon in surface waters of the western Arctic Ocean based on remote sensing and biogeochemical modeling , 2017 .

[140]  Bangsen Tian,et al.  Use of Intensity and Coherence of X-Band SAR Data to Map Thermokarst Lakes on the Northern Tibetan Plateau , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[141]  Ulrike Herzschuh,et al.  Terrain controls on the occurrence of coastal retrogressive thaw slumps along the Yukon Coast, Canada , 2017 .

[142]  Jed O. Kaplan,et al.  WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia , 2015 .

[143]  Jed O. Kaplan,et al.  Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index , 2009 .

[144]  Kenneth M. Hinkel,et al.  Satellite remote sensing classification of thaw lakes and drained thaw lake basins on the North Slope of Alaska , 2005 .

[145]  H. Velthuizen,et al.  Harmonized World Soil Database (version 1.2) , 2008 .

[146]  G. Cheng Permafrost Studies in the Qinghai.Tibet Plateau for Road Construction , 2005 .

[147]  Kenneth M. Hinkel,et al.  Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska , 2005 .

[148]  Alexandre Langlois,et al.  Validation of GlobSnow-2 snow water equivalent over Eastern Canada. , 2017, Remote sensing of environment.

[149]  Michael W. Smith,et al.  Permafrost monitoring and detection of climate change , 1996 .

[150]  S. Loew,et al.  Classification of slope processes based on multitemporal DInSAR analyses in the Himalaya of NW Bhutan , 2019, Remote Sensing of Environment.

[151]  Jitendra Kumar,et al.  Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural Networks , 2019, Remote. Sens..

[152]  Ian Olthof,et al.  A raster version of the Circumpolar Arctic Vegetation Map (CAVM) , 2019, Remote Sensing of Environment.

[153]  L. Hinzman,et al.  Planning the Next Generation of Arctic Ecosystem Experiments , 2011 .

[154]  Chenghu Zhou,et al.  Model Simulation and Prediction of Decadal Mountain Permafrost Distribution Based on Remote Sensing Data in the Qilian Mountains from the 1990s to the 2040s , 2019, Remote. Sens..

[155]  M. Torre Jorgenson,et al.  Drivers of Landscape Changes in Coastal Ecosystems on the Yukon-Kuskokwim Delta, Alaska , 2018, Remote. Sens..

[156]  E. Pfeiffer,et al.  Organic carbon and total nitrogen stocks in soils of the Lena River Delta , 2012 .

[157]  G. Larocque,et al.  Controls on water balance of shallow thermokarst lakes and their relations with catchment characteristics: a multi‐year, landscape‐scale assessment based on water isotope tracers and remote sensing in Old Crow Flats, Yukon (Canada) , 2014 .

[158]  Julia Boike,et al.  Spatial and temporal variations of summer surface temperatures of wet polygonal tundra in Siberia - implications for MODIS LST based permafrost monitoring , 2010 .

[159]  F. Miesner,et al.  Recent advances in the study of Arctic submarine permafrost , 2020, Permafrost and Periglacial Processes.

[160]  Andreas Kääb,et al.  Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale , 2019, Earth-Science Reviews.

[161]  Justin R. Adams,et al.  Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada , 2018, Environmental Research Letters.

[162]  E. Lévesque,et al.  Assessing Permafrost Degradation and Land Cover Changes (1986–2009) using Remote Sensing Data over Umiujaq, Sub‐Arctic Québec , 2015 .

[163]  Annett Bartsch,et al.  Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes , 2012, Remote. Sens..

[164]  Ramon F. Hanssen,et al.  Detection of permafrost sensitivity of the Qinghai–Tibet railway using satellite radar interferometry , 2015 .

[165]  Alain Pietroniro,et al.  Connectivity and storage functions of channel fens and flat bogs in northern basins , 2003 .

[166]  T. Tadono,et al.  VALIDATION OF "AW3D" GLOBAL DSM GENERATED FROM ALOS PRISM , 2016 .

[167]  J. Moncrieff,et al.  Quantifying landscape‐level methane fluxes in subarctic Finland using a multiscale approach , 2015, Global change biology.

[168]  Changsheng Li,et al.  High Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire , 2012, Remote. Sens..

[169]  Masataka Watanabe,et al.  Diverse Responses of Remotely Sensed Grassland Phenology to Interannual Climate Variability over Frozen Ground Regions in Mongolia , 2014, Remote. Sens..

[170]  Claude R. Duguay,et al.  Remote sensing of permafrost and frozen ground , 2014 .

[171]  A. Bartsch,et al.  Circumpolar Mapping of Ground-Fast Lake Ice , 2017, Front. Earth Sci..

[172]  Ingmar Nitze,et al.  21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes , 2018, Nature Communications.

[173]  Zhen Li,et al.  Interaction between permafrost and infrastructure along the Qinghai–Tibet Railway detected via jointly analysis of C- and L-band small baseline SAR interferometry , 2012 .

[174]  A. Belward,et al.  GLC2000: a new approach to global land cover mapping from Earth observation data , 2005 .

[175]  Robert H. Fraser,et al.  Detecting Landscape Changes in High Latitude Environments Using Landsat Trend Analysis: 1. Visualization , 2014, Remote. Sens..

[176]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[177]  E. S. Melnikov,et al.  Circum-Arctic map of permafrost and ground-ice conditions , 1997 .

[178]  Guoan Yin,et al.  High Spatial Resolution Modeling of Climate Change Impacts on Permafrost Thermal Conditions for the Beiluhe Basin, Qinghai-Tibet Plateau , 2019, Remote. Sens..

[179]  Robert H. Fraser,et al.  Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985 , 2015 .

[180]  Marek Kasprzak,et al.  Evolution of Near-Shore Outwash Fans and Permafrost Spreading Under Their Surface: A Case Study from Svalbard , 2020, Remote. Sens..

[181]  Kamini Singha,et al.  Investigating lake-area dynamics across a permafrost-thaw spectrum using airborne electromagnetic surveys and remote sensing time-series data in Yukon Flats, Alaska , 2019, Environmental Research Letters.

[182]  S. Doney,et al.  On the Ability of Space‐Based Passive and Active Remote Sensing Observations of CO2 to Detect Flux Perturbations to the Carbon Cycle , 2018 .

[183]  Kei Shiomi,et al.  A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor , 2019, Atmospheric Measurement Techniques.

[184]  Guido Grosse,et al.  Spatial distribution of thermokarst terrain in Arctic Alaska , 2016 .

[185]  A. Ekaykin,et al.  Chapter 3: Polar Regions , 2019 .

[186]  F. Meyer,et al.  Reconstructing movement history of frozen debris lobes in northern Alaska using satellite radar interferometry , 2019, Remote Sensing of Environment.

[187]  W. Pollard,et al.  An estimate of ice wedge volume for a High Arctic polar desert environment, Fosheim Peninsula, Ellesmere Island , 2018, The Cryosphere.

[188]  A. Kouraev,et al.  Recent dynamics of hydro-ecosystems in thermokarst depressions in Central Siberia from satellite and in situ observations: Importance for agriculture and human life. , 2018, The Science of the total environment.

[189]  Dara Entekhabi,et al.  Recent Arctic amplification and extreme mid-latitude weather , 2014 .

[190]  Qiang Li,et al.  Distinguishing streamflow trends caused by changes in climate, forest cover, and permafrost in a large watershed in northeastern China , 2017 .

[191]  S. Goetz,et al.  Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska , 2013 .

[192]  J. Bockheim Distribution, properties and origin of viscous-flow features in the McMurdo Dry Valleys, Antarctica , 2014 .

[193]  Jeremy B. Jones,et al.  Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment , 2016 .

[194]  Xuelong Chen,et al.  Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. , 2018, The Science of the total environment.

[195]  M. Torre Jorgenson,et al.  Assessment of LiDAR and Spectral Techniques for High-Resolution Mapping of Sporadic Permafrost on the Yukon-Kuskokwim Delta, Alaska , 2018, Remote. Sens..

[196]  Haili Hu,et al.  Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT , 2018 .

[197]  Guido Grosse,et al.  Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska , 2011 .

[198]  Thomas Schmid,et al.  Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region) , 2012 .

[199]  Stefan Dech,et al.  Global SnowPack: a new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent , 2015 .

[200]  Kirsten Elger,et al.  The new database of the Global Terrestrial Network for Permafrost (GTN-P) , 2015 .

[201]  Sang-Eun Park,et al.  ASCAT Surface State Flag (SSF): Extracting Information on Surface Freeze/Thaw Conditions From Backscatter Data Using an Empirical Threshold-Analysis Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[202]  I. Overeem,et al.  The effect of changing sea ice on the physical vulnerability of Arctic coasts , 2014 .

[203]  ESA DUE Permafrost: An Earth observation (EO) permafrost monitoring system , 2011 .

[204]  R. Ludwig,et al.  Thermokarst pond dynamics in subarctic environment monitoring with radar remote sensing , 2018, Permafrost and Periglacial Processes.

[206]  Philip Marzahn,et al.  Mapping permafrost landscape features using object-based image classification of multi-temporal SAR images , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[207]  Guido Grosse,et al.  Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region , 2013 .

[208]  Bernd Etzelmüller,et al.  Recent advances in permafrost modelling , 2008 .

[209]  Zhiwei Zhou,et al.  Using Long-Term SAR Backscatter Data to Monitor Post-Fire Vegetation Recovery in Tundra Environment , 2019, Remote. Sens..

[210]  C. Ruppel,et al.  Minimum distribution of subsea ice‐bearing permafrost on the U.S. Beaufort Sea continental shelf , 2012 .

[211]  Guido Grosse,et al.  Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia , 2017 .

[212]  S. Juutinen,et al.  Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling field observations with remote sensing data , 2018 .

[213]  Michael E. Bykov,et al.  Comparison of ALOS PALSAR interferometry and field geodetic leveling for marshy soil thaw/freeze monitoring, case study from the Baikal lake region, Russia , 2016 .

[214]  I. Hajnsek,et al.  Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale , 2017 .

[215]  I. Howat,et al.  ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic , 2016 .

[216]  Andreas Kääb,et al.  Detection and Analysis of Ground Deformation in Permafrost Environments , 2016 .

[217]  B. Jones,et al.  Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors , 2019, Environmental Research Letters.

[218]  V. Brovkin,et al.  Pathway-dependent fate of permafrost region carbon , 2018, Environmental Research Letters.

[219]  John S. Kimball,et al.  Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments , 2016 .

[220]  J. Lenaerts,et al.  Recent climate warming drives ecological change in a remote high-Arctic lake , 2018, Scientific Reports.

[221]  Tazio Strozzi,et al.  Thaw Subsidence of a Yedoma Landscape in Northern Siberia, Measured In Situ and Estimated from TerraSAR-X Interferometry , 2018, Remote. Sens..

[222]  J. Janke,et al.  An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile , 2017 .

[223]  C. Kinnard,et al.  Geomorphology, internal structure, and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro Tapado, upper Elqui Valley, 30°08′ S., 69°55′ W.) — Reply to Discussion by D.C. Nobes , 2015 .

[224]  Guido Grosse,et al.  Quantifying Wedge‐Ice Volumes in Yedoma and Thermokarst Basin Deposits , 2014 .

[225]  Julia Boike,et al.  Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia , 2016 .

[226]  Frank Günther,et al.  Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction , 2015 .

[227]  Yu Qin,et al.  Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai–Tibetan Plateau , 2011 .

[228]  M. Torre Jorgenson,et al.  Regional Patterns and Asynchronous Onset of Ice-Wedge Degradation since the Mid-20th Century in Arctic Alaska , 2018, Remote. Sens..

[229]  Birgit Heim,et al.  Long-Term High-Resolution Sediment and Sea Surface Temperature Spatial Patterns in Arctic Nearshore Waters Retrieved Using 30-Year Landsat Archive Imagery , 2019, Remote. Sens..

[230]  D. McAlpine,et al.  Hidden hearing loss selectively impairs neural adaptation to loud sound environments , 2018, Nature Communications.

[231]  K. Schaefer,et al.  The impact of the permafrost carbon feedback on global climate , 2014 .

[232]  D. Kicklighter Pathway-dependent fate of permafrost region carbon , 2018 .

[233]  Jeremy B. Jones,et al.  Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA , 2014 .

[234]  I. Nitze,et al.  Tundra be dammed: Beaver colonization of the Arctic , 2018, Global change biology.

[235]  J. Rogan,et al.  Estimating upper soil horizon carbon stocks in a permafrost watershed of Northeast Siberia by integrating field measurements with Landsat-5 TM and WorldView-2 satellite data , 2015 .

[236]  Brian Brisco,et al.  A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada , 2011 .

[237]  A. Berg,et al.  Improving Permafrost Modeling by Assimilating Remotely Sensed Soil Moisture , 2019, Water Resources Research.

[238]  G. Grosse,et al.  Geological and geomorphological evolution of a sedimentary periglacial landscape in Northeast Siberia during the Late Quaternary , 2007 .

[239]  Wei Ren,et al.  Spatio-Temporal Variations of Soil Active Layer Thickness in Chinese Boreal Forests from 2000 to 2015 , 2018, Remote. Sens..

[240]  Jing Luo,et al.  Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS , 2018, Remote. Sens..

[241]  Xiaoliang Lu,et al.  Areal changes of land ecosystems in the Alaskan Yukon River Basin from 1984 to 2008 , 2011 .

[242]  John A. Smith,et al.  Investigation of the near‐surface soil freeze‐thaw cycle in the contiguous United States: Algorithm development and validation , 2003 .

[243]  A. Thorpe,et al.  Airborne Mapping Reveals Emergent Power Law of Arctic Methane Emissions , 2020, Geophysical Research Letters.

[244]  Anupma Prakash,et al.  Near-Surface Permafrost Distribution Mapping Using Logistic Regression and Remote Sensing in Interior Alaska , 2012 .

[245]  F. Landerer,et al.  Terrestrial water budget of the Eurasian pan‐Arctic from GRACE satellite measurements during 2003–2009 , 2010 .

[246]  William L. Quinton,et al.  Permafrost‐thaw‐induced land‐cover change in the Canadian subarctic: implications for water resources , 2011 .

[247]  Marius Necsoiu,et al.  Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska , 2013 .

[248]  Marvin N. Wright,et al.  SoilGrids250m: Global gridded soil information based on machine learning , 2017, PloS one.

[249]  A. Brenning Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection , 2009 .

[250]  Claude R. Duguay,et al.  GlobPermafrost- How Space-BasedEarth Observation Supports Understanding of Permafrost , 2016 .

[251]  Donald A. Walker,et al.  Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic , 2019, Geophysical Research Letters.

[252]  Andreas Kääb,et al.  Mountain permafrost distribution modelling using a multi‐criteria approach in the Hövsgöl area, northern Mongolia , 2006 .

[253]  Peter Kuhry,et al.  Thermokarst Lake Morphometry and Erosion Features in Two Peat Plateau Areas of Northeast European Russia , 2013 .

[254]  M. Jorgenson,et al.  Soil carbon and material fluxes across the eroding Alaska Beaufort Sea coastline , 2011 .

[255]  Andreas Kääb,et al.  Spatio-temporal variability of X-band radar backscatter and coherence over the Lena River Delta, Siberia , 2016 .

[256]  Changwei Xie,et al.  Investigation of a Small Landslide in the Qinghai-Tibet Plateau by InSAR and Absolute Deformation Model , 2019, Remote. Sens..

[257]  Mengistu Wolde,et al.  High‐Resolution Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands , 2019, Geophysical research letters.

[258]  David K. Swanson,et al.  Growth of Retrogressive Thaw Slumps in the Noatak Valley, Alaska, 2010-2016, Measured by Airborne Photogrammetry , 2018, Remote. Sens..

[259]  K. R. Everett,et al.  Glossary of Permafrost and Related Ground-Ice Terms , 1989 .

[260]  David Doxaran,et al.  A 50 % increase in the mass of terrestrial particles delivered by the Mackenzie River into the Beaufort Sea (Canadian Arctic Ocean) over the last 10 years , 2015 .

[261]  Bo Zhang,et al.  Time-Series InSAR Monitoring of Permafrost Freeze-Thaw Seasonal Displacement over Qinghai-Tibetan Plateau Using Sentinel-1 Data , 2019, Remote. Sens..

[262]  C. Tucker,et al.  Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades , 2012 .

[263]  Christiane Schmullius,et al.  Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia , 2012 .

[264]  Xiaoli Ding,et al.  Characterization of Active Layer Thickening Rate over the Northern Qinghai-Tibetan Plateau Permafrost Region Using ALOS Interferometric Synthetic Aperture Radar Data, 2007-2009 , 2017, Remote. Sens..

[265]  L. Hinzman,et al.  Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska , 2016 .

[266]  William L. Quinton,et al.  A decision-tree classification for low-lying complex land cover types within the zone of discontinuous permafrost , 2014 .

[267]  G. Guggenberger,et al.  Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia , 2008 .

[268]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[269]  P. Ciais,et al.  A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[270]  R. Beighley,et al.  A hydrologic routing model suitable for climate‐scale simulations of arctic rivers: application to the Mackenzie River Basin , 2015 .

[271]  Qian Sun,et al.  Investigating the Ground Deformation and Source Model of the Yangbajing Geothermal Field in Tibet, China with the WLS InSAR Technique , 2016, Remote. Sens..

[272]  S. Erasmi,et al.  Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia , 2018 .

[273]  Jing Luo,et al.  Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images , 2020 .

[274]  Dana R. N. Brown,et al.  Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland , 2015, Global change biology.

[275]  Ryan N. Engstrom,et al.  Land Cover Change in the Lower Yenisei River Using Dense Stacking of Landsat Imagery in Google Earth Engine , 2018, Remote. Sens..

[276]  Andrei Kartoziia,et al.  Assessment of the Ice Wedge Polygon Current State by Means of UAV Imagery Analysis (Samoylov Island, the Lena Delta) , 2019, Remote. Sens..

[277]  Claude R. Duguay,et al.  Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations , 2015 .

[278]  Hui Lin,et al.  Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta , 2018, Remote. Sens..

[279]  Robert H. Fraser,et al.  Climate Sensitivity of High Arctic Permafrost Terrain Demonstrated by Widespread Ice-Wedge Thermokarst on Banks Island , 2018, Remote. Sens..

[280]  Y. Weidmann,et al.  Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview , 2005 .

[281]  Ze Zhang,et al.  Morphometric Analysis of Groundwater Icings: Intercomparison of Estimation Techniques , 2020, Remote. Sens..

[282]  Joshua Lederberg Letter from Joshua Lederberg to Joseph P. Kerwin, National Aeronautics and Space Administration (NASA) , 1975 .

[283]  R. Fraser,et al.  A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections , 2014 .

[284]  Jing Luo,et al.  Permafrost Presence/Absence Mapping of the Qinghai-Tibet Plateau Based on Multi-Source Remote Sensing Data , 2018, Remote. Sens..

[285]  A. Brenning,et al.  Detecting rock glacier flow structures using Gabor filters and IKONOS imagery , 2012 .

[286]  Nicolas Marchand,et al.  Snow-Covered Soil Temperature Retrieval in Canadian Arctic Permafrost Areas, Using a Land Surface Scheme Informed with Satellite Remote Sensing Data , 2018, Remote. Sens..

[287]  David L. Verbyla,et al.  Landscape Effects of Wildfire on Permafrost Distribution in Interior Alaska Derived from Remote Sensing , 2016, Remote. Sens..

[288]  Y. Sheng,et al.  Permafrost zonation index map and statistics over the Qinghai–Tibet Plateau based on field evidence , 2019, Permafrost and Periglacial Processes.

[289]  Liu Yongzhi,et al.  A review of recent frozen soil engineering in permafrost regions along Qinghai‐Tibet Highway, China , 2002 .

[290]  Hong Zhang,et al.  Analysis of Permafrost Region Coherence Variation in the Qinghai-Tibet Plateau with a High-Resolution TerraSAR-X Image , 2018, Remote. Sens..

[291]  Alexandra Veremeeva,et al.  Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene , 2009 .

[292]  Julia Boike,et al.  Satellite-based modeling of permafrost temperatures in a tundra lowland landscape , 2013 .

[293]  E. S. Melnikov,et al.  The Circumpolar Arctic vegetation map , 2005 .

[294]  K. Ranson,et al.  Climate-induced landsliding within the larch dominant permafrost zone of central Siberia , 2016, Environmental research letters : ERL [Web site].

[295]  John S. Kimball,et al.  Satellite Microwave remote sensing of contrasting surface water inundation changes within the Arctic-Boreal Region , 2012 .

[296]  Anne D. Bjorkman,et al.  Complexity revealed in the greening of the Arctic , 2019, Nature Climate Change.

[297]  T. Borsdorff,et al.  Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements , 2021 .

[298]  Weixing Zhang,et al.  Deep Convolutional Neural Networks for Automated Characterization of Arctic Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery , 2018, Remote. Sens..

[299]  Oriol Monserrat,et al.  DInSAR for a Regional Inventory of Active Rock Glaciers in the Dry Andes Mountains of Argentina and Chile with Sentinel-1 Data , 2018, Remote. Sens..

[300]  Mathias Ulrich,et al.  Differences in behavior and distribution of permafrost‐related lakes in Central Yakutia and their response to climatic drivers , 2017 .

[301]  Balázs Nagy,et al.  Shallow ground temperature measurements on the highest volcano on Earth, Mt. Ojos del Salado, Arid Andes, Chile , 2018, Permafrost and Periglacial Processes.

[302]  Guido Grosse,et al.  Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska , 2011 .

[303]  Deliang Chen,et al.  Response of Groundwater Storage and Recharge in the Qaidam Basin (Tibetan Plateau) to Climate Variations From 2002 to 2016 , 2019, Journal of Geophysical Research: Atmospheres.

[304]  D. Lawrence,et al.  Assessment of model estimates of land-atmosphere CO 2 exchange across Northern Eurasia , 2014 .

[305]  C. Hopkinson,et al.  Vegetation Canopy and Radiation Controls on Permafrost Plateau Evolution within the Discontinuous Permafrost Zone, Northwest Territories, Canada , 2011 .

[306]  Guido Grosse,et al.  Monitoring Inter- and Intra-Seasonal Dynamics of Rapidly Degrading Ice-Rich Permafrost Riverbanks in the Lena Delta with TerraSAR-X Time Series , 2017, Remote. Sens..

[307]  Shohei Watanabe,et al.  Optical diversity of thaw ponds in discontinuous permafrost: A model system for water color analysis , 2011 .

[308]  C. Schaefer,et al.  A proxy for snow cover and winter ground surface cooling: Mapping Usnea sp. communities using high resolution remote sensing imagery (Maritime Antarctica) , 2014 .

[309]  Steven J. Phillips,et al.  Shifts in Arctic vegetation and associated feedbacks under climate change , 2013 .

[310]  Kazuhito Ichii,et al.  Hydrological Variability and Changes in the Arctic Circumpolar Tundra and the Three Largest Pan-Arctic River Basins from 2002 to 2016 , 2018, Remote. Sens..

[311]  B. Elberling,et al.  A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region , 2013 .

[312]  B. Elberling,et al.  Future permafrost conditions along environmental gradients in Zackenberg, Greenland , 2014 .

[314]  C. Leuschner,et al.  Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest‐steppe , 2016, Global change biology.

[315]  Wayne H. Pollard,et al.  Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada , 2008 .

[316]  W. Wagner,et al.  Evaluation of the ESA CCI soil moisture product using ground-based observations , 2015 .

[317]  Changjoo Kim,et al.  Detection of tundra trail damage near Barrow, Alaska using remote imagery , 2017 .

[318]  Julia Boike,et al.  Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes , 2014 .

[319]  Heiko Balzter,et al.  The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites , 2009 .

[320]  Bo Zhang,et al.  Deformation Feature Analysis of Qinghai–Tibet Railway Using TerraSAR-X and Sentinel-1A Time-Series Interferometry , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[321]  Johanna Mård Karlsson,et al.  Temporal Behavior of Lake Size-Distribution in a Thawing Permafrost Landscape in Northwestern Siberia , 2014, Remote. Sens..

[322]  Carson A. Baughman,et al.  Presence of rapidly degrading permafrost plateaus in south-central Alaska , 2016 .

[323]  Effect of permafrost thaw on the dynamics of lakes recharged by ice‐jam floods: case study of Yukon Flats, Alaska , 2016 .

[324]  Urs Wegmüller,et al.  Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation , 2010 .

[325]  Richard H. Chen,et al.  Sensitivity of active-layer freezing process to snow cover in Arctic Alaska , 2018, The Cryosphere.

[326]  Shi-chang Kang,et al.  Understanding changes in the water budget driven by climate change in cryospheric‐dominated watershed of the northeast Tibetan Plateau, China , 2019, Hydrological Processes.

[327]  Philippe Ciais,et al.  Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region , 2017 .

[328]  Bernd Etzelmüller,et al.  Terrain parameters and remote sensing data in the analysis of permafrost distribution and periglacial processes: principles and examples from southern Norway , 2001 .

[329]  Bin Chen,et al.  Impacts of Climate Change on Tibetan Lakes: Patterns and Processes , 2018, Remote. Sens..

[330]  Irena Hajnsek,et al.  A Statistical Test of Phase Closure to Detect Influences on DInSAR Deformation Estimates Besides Displacements and Decorrelation Noise: Two Case Studies in High-Latitude Regions , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[331]  Claude R. Duguay,et al.  Pan-Arctic Land Surface Temperature from MODIS and AATSR: Product Development and Intercomparison , 2012, Remote. Sens..

[332]  Christina M. Kennedy,et al.  High-Resolution Satellite Imagery Is an Important yet Underutilized Resource in Conservation Biology , 2014, PloS one.

[333]  Pedro Freitas,et al.  Identification of a Threshold Minimum Area for Reflectance Retrieval from Thermokarst Lakes and Ponds Using Full-Pixel Data from Sentinel-2 , 2019, Remote. Sens..

[334]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[335]  M. T. Jorgenson,et al.  Advances in Thermokarst Research , 2013 .

[336]  W. G. Rees,et al.  Assessment of spring floods and surface water extent over the Yamalo-Nenets Autonomous District , 2013 .

[337]  R. Armstrong,et al.  Application of Satellite Remote Sensing Techniques to Frozen Ground Studies , 2004 .

[338]  V. Brovkin,et al.  Environmental conditions for alternative tree-cover states in high latitudes , 2016 .

[339]  J. Hölemann,et al.  Dissolved organic matter at the fluvial–marine transition in the Laptev Sea using in situ data and ocean colour remote sensing , 2019, Biogeosciences.

[340]  Henk Eskes,et al.  TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications , 2012 .

[341]  Jingjuan Liao,et al.  Monitoring lake-level changes in the Qinghai–Tibetan Plateau using radar altimeter data (2002–2012) , 2013 .

[342]  A. LaRocque,et al.  Modelling and mapping permafrost at high spatial resolution using Landsat and Radarsat-2 images in Northern Ontario, Canada: Part 2 – regional mapping , 2016 .

[343]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[344]  Guido Grosse,et al.  Size Distributions of Arctic Waterbodies Reveal Consistent Relations in Their Statistical Moments in Space and Time , 2019, Front. Earth Sci..

[345]  Frank Günther,et al.  Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications , 2013 .

[346]  Scott J. Goetz,et al.  An overview of ABoVE airborne campaign data acquisitions and science opportunities , 2019, Environmental Research Letters.

[347]  Tazio Strozzi,et al.  Seasonal Progression of Ground Displacement Identified with Satellite Radar Interferometry and the Impact of Unusually Warm Conditions on Permafrost at the Yamal Peninsula in 2016 , 2019, Remote. Sens..

[348]  Stephan Gruber,et al.  Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data , 2001 .

[349]  K. Ranson,et al.  Climate-induced larch growth response within the central Siberian permafrost zone , 2015 .

[350]  J. Cihlar,et al.  Changes in soil temperature and active layer thickness during the twentieth century in a region in western Canada , 2003 .

[351]  Guido Grosse,et al.  Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska , 2013 .

[352]  Donald A. Walker,et al.  Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011 , 2016 .

[353]  M. Grigoriev,et al.  Nearshore arctic subsea permafrost in transition , 2007 .

[354]  Birgit Heim,et al.  Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to Lake and Lake Catchment Properties , 2018, Remote. Sens..

[355]  W. Pollard,et al.  An estimate of ice wedge volume for a High Arctic polar desert environment , Fosheim Peninsula , Ellesmere Island , 2018 .

[356]  Stephen A. Wolfe,et al.  Geological and meteorological controls on icing (aufeis) dynamics (1985 to 2014) in subarctic Canada , 2015 .

[357]  Genxu Wang,et al.  Evaluation of the rescaled complementary principle in the estimation of evaporation on the Tibetan Plateau. , 2020, The Science of the total environment.

[358]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[359]  Wayne H. Pollard,et al.  Erosion and Flooding—Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada , 2016, Estuaries and Coasts.

[360]  E. Hauber,et al.  Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard) , 2017 .

[361]  Howard A. Zebker,et al.  Remote sensing measurements of thermokarst subsidence using InSAR , 2015 .

[362]  Arnaud Mialon,et al.  Evaluation of Spaceborne L-Band Radiometer Measurements for Terrestrial Freeze/Thaw Retrievals in Canada , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[363]  Ruth Duerr,et al.  The Schema.org Datasets Schema: Experiences at the National Snow and Ice Data Center , 2014 .

[364]  James R. Craig,et al.  Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada , 2014 .

[365]  I. Myers-Smith,et al.  Effect of Terrain Characteristics on Soil Organic Carbon and Total Nitrogen Stocks in Soils of Herschel Island, Western Canadian Arctic , 2017 .

[366]  A. Kääb Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data , 2002 .

[367]  Yngvar Larsen,et al.  Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR , 2019, Remote Sensing of Environment.

[368]  Stanford B. Hooker,et al.  Pan-Arctic distributions of continental runoff in the Arctic Ocean , 2013, Scientific Reports.

[369]  Dong L. Wu,et al.  Space‐Based Observations for Understanding Changes in the Arctic‐Boreal Zone , 2020, Reviews of Geophysics.

[370]  Brian Brisco,et al.  Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[371]  Catherine Ottlé,et al.  Land surface temperature retrieval over circumpolar Arctic using SSM/I-SSMIS and MODIS data , 2015 .

[372]  Lin Zhao,et al.  Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry , 2016 .

[373]  Guido Grosse,et al.  Characterizing Post-Drainage Succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI Data , 2012, Remote. Sens..

[374]  Andrew M. Cunliffe,et al.  Rapid retreat of permafrost coastline observed with aerial drone photogrammetry , 2018, The Cryosphere.

[375]  Anna Novikova,et al.  Dynamics of Permafrost Coasts of Baydaratskaya Bay (Kara Sea) Based on Multi-Temporal Remote Sensing Data , 2018, Remote. Sens..

[376]  Zhiliang Zhu,et al.  Modeling Wildfire-Induced Permafrost Deformation in an Alaskan Boreal Forest Using InSAR Observations , 2018, Remote. Sens..

[377]  Birgit Heim,et al.  Evaluation of a MetOp ASCAT‐Derived Surface Soil Moisture Product in Tundra Environments , 2018, Journal of geophysical research. Earth surface.

[378]  Tazio Strozzi,et al.  Monitoring Rock Glacier Kinematics with Satellite Synthetic Aperture Radar , 2020, Remote. Sens..

[379]  Mathias Ulrich,et al.  Evolution of thermokarst in East Siberian ice-rich permafrost: A case study , 2013 .

[380]  Kenji Yoshikawa,et al.  Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska , 2003 .

[381]  Siyuan Wang,et al.  Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau , 2009 .

[382]  Guido Grosse,et al.  Changing permafrost in a warming world and feedbacks to the Earth system , 2016 .

[383]  Annett Bartsch,et al.  Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges , 2016, Remote. Sens..

[384]  C. Stephan,et al.  MERLIN: a space-based methane monitor , 2011, Optical Engineering + Applications.

[385]  G. Osinski,et al.  Geomorphology of Gullies at Thomas Lee Inlet, Devon Island, Canadian High Arctic , 2018, Permafrost and Periglacial Processes.

[386]  Annett Bartsch,et al.  Progress in space-borne studies of permafrost for climate science: Towards a multi-ECV approach , 2017 .

[387]  C. Prigent,et al.  Wetland Extent and Methane Dynamics: An Overview of the ESA ALANIS-Methane Project , 2010 .

[388]  Chandana Gangodagamage,et al.  Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets , 2014, Water resources research.

[389]  Hiroto Nagai,et al.  Southwest-facing slopes control the formation of debris-covered glaciers in the Bhutan Himalaya , 2013 .

[390]  D. M. Lawrence,et al.  Climate change and the permafrost carbon feedback , 2014, Nature.

[391]  F. Costard,et al.  Evolution of the banks of thermokarst lakes in Central Yakutia (Central Siberia) due to retrogressive thaw slump activity controlled by insolation , 2015 .

[392]  R. Barry,et al.  Processes and impacts of Arctic amplification: A research synthesis , 2011 .

[393]  F. Nelson,et al.  The circumpolar active layer monitoring (calm) program: Research designs and initial results , 2000 .

[394]  Pedro Pina,et al.  Evaluation of the use of very high resolution aerial imagery for accurate ice-wedge polygon mapping (Adventdalen, Svalbard). , 2017, The Science of the total environment.

[395]  J. Chanton,et al.  Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s , 2016 .

[396]  Franz J. Meyer,et al.  Analyzing floating and bedfast lake ice regimes across Arctic Alaska using 25 years of space-borne SAR imagery , 2018 .

[397]  Vladimir E. Romanovsky,et al.  Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis , 2010 .

[398]  Yunshan Meng,et al.  Characteristics of Surface Deformation Detected by X-band SAR Interferometry over Sichuan-Tibet Grid Connection Project Area, China , 2015, Remote. Sens..

[399]  Guido Grosse,et al.  Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta , 2011 .

[400]  Jing Luo,et al.  Numerical Mapping and Modeling Permafrost Thermal Dynamics across the Qinghai-Tibet Engineering Corridor, China Integrated with Remote Sensing , 2018, Remote. Sens..

[401]  Mahta Moghaddam,et al.  The role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics , 2015 .

[402]  Claude R. Duguay,et al.  Using the MODIS land surface temperature product for mapping permafrost: an application to northern Québec and Labrador, Canada , 2009 .

[403]  Guido Grosse,et al.  The use of CORONA images in remote sensing of periglacial geomorphology: an illustration from the NE Siberian coast , 2005 .

[404]  G. Cheng,et al.  Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau , 2018 .

[405]  M. Diepenbroek,et al.  PANGAEA: an information system for environmental sciences , 2002 .

[406]  J. Rowland,et al.  Arctic River Delta Morphologic Variability and Implications for Riverine Fluxes to the Coast , 2020, Journal of Geophysical Research: Earth Surface.

[407]  Dawen Yang,et al.  Satellite-based simulation of soil freezing/thawing processes in the northeast Tibetan Plateau , 2019, Remote Sensing of Environment.

[408]  Wayne H. Pollard,et al.  Coastal Erosion of Permafrost Soils Along the Yukon Coastal Plain and Fluxes of Organic Carbon to the Canadian Beaufort Sea , 2018 .

[409]  Philip Marzahn,et al.  Comparison of TerraSAR-X and ALOS PALSAR Differential Interferometry With Multisource DEMs for Monitoring Ground Displacement in a Discontinuous Permafrost Region , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[410]  S. Lamoureux,et al.  Climate and Terrain Characteristics Linked to Mud Ejection Occurrence in the Canadian High Arctic , 2016 .

[411]  Alan E. Taylor,et al.  Marine transgression, shoreline emergence: Evidence in seabed and terrestrial ground temperatures of changing relative sea levels, Arctic Canada , 1991 .

[412]  W. Linklater,et al.  Single compounds elicit complex behavioural responses in wild, free-ranging rats , 2018, Scientific Reports.

[413]  Janet C. Jorgenson,et al.  Landscape Change Detected over a Half Century in the Arctic National Wildlife Refuge Using High-Resolution Aerial Imagery , 2018, Remote. Sens..

[414]  P. Bonnaventure,et al.  Utility of Classification and Regression Tree Analyses and Vegetation in Mountain Permafrost Models, Yukon, Canada , 2011 .

[415]  Claude R. Duguay,et al.  Remote sensing of permafrost and seasonally frozen ground , 2013 .

[416]  Laurence C. Smith,et al.  Quantifying sources of error in multitemporal multisensor lake mapping , 2013 .

[417]  S. Pandey,et al.  Satellite Discovery of Anomalously Large Methane Point Sources From Oil/Gas Production , 2019, Geophysical Research Letters.

[418]  Howard A. Zebker,et al.  Inference of the impact of wildfire on permafrost and active layer thickness in a discontinuous permafrost region using the remotely sensed active layer thickness (ReSALT) algorithm , 2019, Environmental Research Letters.

[419]  I. Nitze,et al.  Organic Carbon and Nitrogen Stocks Along a Thermokarst Lake Sequence in Arctic Alaska , 2019, Journal of geophysical research. Biogeosciences.

[420]  Pascal Lecomte,et al.  The ESA Climate Change Initiative (CCI): A European contribution to the generation of the Global Climate Observing System , 2017 .

[421]  Robert H. Fraser,et al.  Mapping the Activity and Evolution of Retrogressive Thaw Slumps by Tasselled Cap Trend Analysis of a Landsat Satellite Image Stack , 2014 .

[422]  Alexander Fedorov,et al.  Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions , 2017, Remote. Sens..

[423]  Long Jin,et al.  Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities , 2018, Remote. Sens..

[424]  Robert H. Fraser,et al.  Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada , 2015 .

[425]  L. Ravanel,et al.  Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. , 2017, The Science of the total environment.

[426]  John S. Kimball,et al.  An extended global Earth system data record on daily landscape freeze–thaw status determined from satellite passive microwave remote sensing , 2016 .

[427]  Guido Grosse,et al.  Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual airborne LiDAR elevation data , 2017 .

[428]  Wenjun Lu,et al.  Towards Circumpolar Mapping of Arctic Settlements and Infrastructure Based on Sentinel-1 and Sentinel-2 , 2020, Remote. Sens..

[429]  John M. Wahr,et al.  InSAR measurements of surface deformation over permafrost on the North Slope of Alaska , 2010 .

[430]  Yngvar Larsen,et al.  Visualizing and interpreting surface displacement patterns on unstable slopes using multi-geometry satellite SAR interferometry (2D InSAR) , 2017 .

[431]  M. Jorgenson,et al.  Response of boreal ecosystems to varying modes of permafrost degradation , 2005 .

[432]  Donatella Zona,et al.  Numerical Terradynamic Simulation Group 11-2016 Mapping Arctic Tundra Vegetation Communities Using Field Spectroscopy and Multispectral Satellite Data in North Alaska , USA , 2017 .

[433]  Guido Grosse,et al.  Quantification of upland thermokarst features with high resolution remote sensing , 2013 .

[434]  Lingmei Jiang,et al.  Evaluation and analysis of SMAP, AMSR2 and MEaSUREs freeze/thaw products in China , 2020 .

[435]  Annett Bartsch,et al.  Circumpolar patterns of potential mean annual ground temperature based on surface state obtained from microwave satellite data , 2018, The Cryosphere.

[436]  Laura Chasmer,et al.  Threshold loss of discontinuous permafrost and landscape evolution , 2017, Global change biology.

[437]  David L. Verbyla,et al.  Twentieth century erosion in Arctic Alaska foothills: The influence of shrubs, runoff, and permafrost , 2011 .

[438]  Diana L. Bull,et al.  A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic , 2018, Environmental Research Letters.

[439]  I. Nitze,et al.  Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic , 2018, Nature Communications.

[440]  D. Walker,et al.  Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra , 2014 .

[441]  John S. Kimball,et al.  Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high‐latitude ecosystems , 2006 .

[442]  B. Forbes,et al.  Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows , 2010 .