On the generation of regular long waves in numerical wave flumes based on the particle finite element method

ABSTRACT Most of the coastal hydraulic studies in physical and numerical wave flumes (NWF) require the correct generation of nonlinear, long period waves at intermediate and shallow water conditions. In this paper, the ability to generate such long waves in an NWF based on the particle finite element method (PFEM) is analysed. Wavemaker theories based on the Stokes second-order wave theory, cnoidal wave theory and solitary wave theory are implemented in the NWF through piston type paddle boundary conditions. An assessment of the capability and robustness of generation and propagation of long waves in the NWF is carried out. Numerical results are compared to theoretical results and the data from physical tests. Results indicate that regular long waves of permanent form can be generated in an NWF based on the PFEM using the implemented wavemaker theories. However, when choosing a wavemaker theory a compromise has to be made between the target wave conditions and the validity range of each wavemaker theory.

[1]  Eugenio Oñate,et al.  A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh , 2015 .

[2]  Leo M. González,et al.  An extended validation of the last generation of particle finite element method for free surface flows , 2015, J. Comput. Phys..

[3]  G. Meschke,et al.  An ALE–PFEM method for the numerical simulation of two-phase mixture flow , 2014 .

[4]  Nan-Jing Wu,et al.  Generation of stable solitary waves by a piston-type wave maker , 2014 .

[5]  Javier L. Lara,et al.  A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations , 2013 .

[6]  Moncho Gómez-Gesteira,et al.  New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters , 2013, Comput. Phys. Commun..

[7]  Denys Dutykh,et al.  Efficient computation of steady solitary gravity waves , 2013, 1302.1812.

[8]  Denys Dutykh,et al.  Fast accurate computation of the fully nonlinear solitary surface gravity waves , 2012, 1212.0289.

[9]  E. Oñate,et al.  A coupled PFEM–Eulerian approach for the solution of porous FSI problems , 2012, Computational Mechanics.

[10]  Robert A. Dalrymple,et al.  SPHysics - development of a free-surface fluid solver - Part 2: Efficiency and test cases , 2012, Comput. Geosci..

[11]  Agustín Sánchez-Arcilla,et al.  Simulation of Wave Overtopping of Maritime Structures in a Numerical Wave Flume , 2012, J. Appl. Math..

[12]  Hitoshi Gotoh,et al.  GPU-acceleration for Moving Particle Semi-Implicit method , 2011 .

[13]  Firat Yener Testik,et al.  New Methodology for Laboratory Generation of Solitary Waves , 2010 .

[14]  Eugenio Oñate,et al.  Analysis of some partitioned algorithms for fluid‐structure interaction , 2010 .

[15]  Robert A. Dalrymple,et al.  SPH on GPU with CUDA , 2010 .

[16]  Abbas Khayyer,et al.  Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure , 2009 .

[17]  Eugenio Oñate,et al.  Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows , 2008 .

[18]  H. Schäffer,et al.  Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes , 2007 .

[19]  D. Graham,et al.  Simulation of wave overtopping by an incompressible SPH model , 2006 .

[20]  Javier L. Lara,et al.  RANS modelling applied to random wave interaction with submerged permeable structures , 2006 .

[21]  Eugenio Oñate,et al.  Fluid-structure interaction using the particle finite element method , 2006 .

[22]  P. Liu,et al.  Experimental and numerical investigation of viscous effects on solitary wave propagation in a wave tank , 2006 .

[23]  Benedict D. Rogers,et al.  Numerical Modeling of Water Waves with the SPH Method , 2006 .

[24]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[25]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[26]  Hemming A. Schäffer,et al.  Second-order wavemaker theory for multidirectional waves , 2003 .

[27]  Eugenio Oñate,et al.  Polyhedrization of an arbitrary 3D point set , 2003 .

[28]  GuizieN. Katell,et al.  Accuracy of solitary wave generation by a piston wave maker. , 2002 .

[29]  R. Codina Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows , 2001 .

[30]  H. Schäffer,et al.  Second-Order Wave Generation in Laboratory Bassins , 2001 .

[31]  Derek M. Causon,et al.  Numerical simulation of wave overtopping of coastal structures using the non-linear shallow water equations , 2000 .

[32]  E. Oñate A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation , 2000 .

[33]  J. Monaghan,et al.  Solitary Waves on a Cretan Beach , 1999 .

[34]  Pengzhi Lin,et al.  A numerical study of breaking waves in the surf zone , 1998, Journal of Fluid Mechanics.

[35]  Nicholas Dodd,et al.  Numerical Model of Wave Run-Up, Overtopping, and Regeneration , 1998 .

[36]  M.R.A. van Gent,et al.  Wave Action On and In Permeable Structures , 1995 .

[37]  Stephan T. Grilli,et al.  Shoaling of Solitary Waves on Plane Beaches , 1994 .

[38]  M. Gent,et al.  The modelling of wave action on and in coastal structures , 1994 .

[39]  Steven A Hughes,et al.  PHYSICAL MODELS AND LABORATORY TECHNIQUES IN COASTAL ENGINEERING , 1993 .

[40]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[41]  Georges Chapalain,et al.  Observed and modeled resonantly interacting progressive water-waves , 1992 .

[42]  Robert T. Hudspeth,et al.  Stokes drift in two-dimensional wave flumes , 1991, Journal of Fluid Mechanics.

[43]  Costas E. Synolakis,et al.  GENERATION OF LONG WAVES IN LABORATORY , 1990 .

[44]  Robert T. Guza,et al.  Paddle Generated Waves in Laboratory Channels , 1980 .

[45]  D. Goring,et al.  Tsunamis -- the propagation of long waves onto a shelf , 1978 .

[46]  Ole Secher Madsen,et al.  On the generation of long waves , 1971 .

[47]  O. Madsen,et al.  WAVES GENERATED BY A PISTON-TYPE WAVEMAKER , 1970 .

[48]  T. Sakai,et al.  Horizontal Water Particle Velocity of Finite Amplitude Waves , 1970 .

[49]  D. J. Divoky,et al.  SHALLOW WATER WAVES A COMPARISON OF THEORIES AND EXPERIMENTS , 1968 .

[50]  B. Glenne CONSTITUENT TRANSPORT IN ESTUARIES , 1968 .

[51]  J. Morison,et al.  THE MECHANICS OF DEEP WATER, SHALLOW WATER, AND BREAKING WAVES , 1953 .

[52]  F. Biesel,et al.  LES APPAREILS GÉNÉRATEURS DE HOULE EN LABORATOIRE , 1951 .

[53]  J. H. Yang,et al.  An experimental study of steep solitary wave reflection at a vertical wall , 2015 .

[54]  G. Fibich Stability of Solitary Waves , 2015 .

[55]  Xavier Gironella Cobos,et al.  Nonlinear Regular Wave Generation in Numerical and Physical Flumes , 2010 .

[56]  E. O. I. Navarra,et al.  Absorption of water waves in a two-dimensional numerical flume , 2009 .

[57]  Y. Goda Recurring Evolution of Water Waves Through Nonresonant Interactions , 1998 .

[58]  Hemming A. Schäffer,et al.  SECOND-ORDER WAVEMAKER THEORY FOR IRREGULAR WAVES , 1996 .

[59]  P. Fontanet THÉORIE DE LA GÉNÉRATION DE LA HOULE CYLINDRIQUE PAR UN BATTEUR PLAN (2e ordre d'approximation) , 1961 .