On Some Classes of Polynomials Orthogonal on Arcs of the Unit Circle Connected with Symmetric Orthogonal Polynomials on an Interval

Starting from the Delsarte?Genin (DG) mapping of the symmetric orthogonal polynomials on an interval (OPI) we construct a one-parameter family of polynomials orthogonal on the unit circle (OPC). The value of the parameter defines the arc on the circle where the weight function vanishes. Some explicit examples of OPC connected with generic Askey?Wilson polynomials are constructed. These polynomials can be considered, as a four-parameter extension of the Askey?Szego? polynomials on the unit circle. We also present examples of OPC having finite and infinite purely discrete spectrum and addition masses inside and outside the unit circle. Connections of DG transformation with sieved OPI and OPC, chain sequences, and the Bauer's numericalg-algorithm (in approximation theory) are analyzed. In particular, we construct some classes of “semiclassical” OPI and OPC starting from periodic solutions of the Bauer'sg-algorithm.

[1]  H. Wall,et al.  Analytic Theory of Continued Fractions , 2000 .

[2]  M. Ismail,et al.  $q$-Hermite polynomials, biorthogonal rational functions, and $q$-beta integrals , 1994 .

[3]  Philippe Delsarte,et al.  The split Levinson algorithm , 1986, IEEE Trans. Acoust. Speech Signal Process..

[4]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[5]  H. Widom The Strong Szego Limit Theorem for Circular Arcs , 1971 .

[6]  V. M. Badkov Systems of orthogonal polynomials explicitly represented by the Jacobi polynomials , 1987 .

[7]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[8]  J. Geronimo,et al.  ORTHOGONAL POLYNOMIALS ON SEVERAL INTERVALS VIA A POLYNOMIAL MAPPING , 1988 .

[9]  Xin Li,et al.  On sieved orthogonal polynomials. IX. Orthogonality on the unit circle. , 1992 .

[10]  R. Steinbauer,et al.  Orthogonal Polynomials on Arcs of the Unit Circle, I , 1996 .

[11]  Walter Van Assche,et al.  Perturbation of Orthogonal Polynomials on an Arc of the Unit Circle, II , 1995 .

[12]  H. Wall Some recent developments in the theory of continued fractions , 1941 .

[13]  L. Vinet,et al.  Difference schrödinger operators with linear and exponential discrete spectra , 1993 .

[14]  M. Kac,et al.  Gabor Szegö: Collected Papers , 1982 .

[15]  Y. Genin,et al.  Tridiagonal approach to the algebraic environment of Toeplitz matrices, part II.: zero and eigenvalue problems , 1991 .

[16]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .

[17]  Ladder operators for Szegö polynomials and related biorthogonal rational functions , 1994, math/9406227.

[18]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[19]  Rupert Lasser,et al.  Orthogonal polynomials and hypergroups. II. The symmetric case , 1994 .

[20]  A. Ronveaux Discrete semi-classical orthogonal polynomials: generalized Meixner , 1986 .

[21]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[22]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[23]  F. Marcellán,et al.  Modifications of Toeplitz Matrices: Jump Functions , 1993 .

[24]  Alphonse P. Magnus Special nonuniform lattice ( snul ) orthogonal polynomials on discrete dense sets of points , 1995 .

[25]  A $q$-beta integral on the unit circle and some biorthogonal rational functions , 1994 .

[26]  Alphonse P. Magnus,et al.  Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .

[27]  INTEGRABLE STRUCTURES OF UNITARY MATRIX MODELS , 1992 .

[28]  Alexei Zhedanov,et al.  Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials , 1994 .

[29]  I︠a︡. L. Geronimus Polynomials orthogonal on a circle and their applications , 1954 .

[30]  Y. Genin,et al.  Tridiagonal approach to the algebraic environment of Toeplitz matrices, part I: basic results , 1991 .

[31]  Friedrich L. Bauer,et al.  The g-Algorithm , 1960 .