The theory of chirowaveguides

The theory of chirowaveguides is discussed, and their salient features are analyzed. It is shown that the Helmholtz equations for the longitudinal components of electric and magnetic fields in chirowaveguides are always coupled and that, consequently, in these waveguides individual transverse electric (TE), transverse magnetic (TM), or transverse electromagnetic (TEM) modes cannot be supported. As an illustrative example, the parallel-plate chirowaveguide is analyzed in detail and the corresponding dispersion relations, cutoff frequencies, and propagating and evanescent modes are obtained. In the dispersion (Brillouin) diagram for a chirowaveguide, three regions are identified: the fast-fast-wave region, the fast-slow-wave region and the slow-slow-wave region. For each of these regions, the electromagnetic field components in a parallel-plate chirowaveguide are analyzed and the electric field components are plotted. Potential applications of chirowaveguides in integrated optical devices, communications systems, and printed circuit antennas are mentioned. >

[1]  N. Engheta,et al.  Modes in chirowaveguides. , 1989, Optics letters.

[2]  N. Engheta,et al.  One- and Two-Dimensional Dyadic Green's Functions in Chiral Media , 1989 .

[3]  Nader Engheta,et al.  Electromagnetic chirality and its applications , 1988, IEEE Antennas and Propagation Society Newsletter.

[4]  Nader Engheta,et al.  Electromagnetic wave propagation through a dielectric–chiral interface and through a chiral slab , 1988 .

[5]  Nader Engheta,et al.  Canonical sources and duality in chiral media (antenna arrays) , 1988 .

[6]  M. P. Silverman,et al.  Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation , 1986 .

[7]  Nader Engheta,et al.  Dyadic green's function and dipole radiation in Chiral media , 1986 .

[8]  V. Varadan,et al.  Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects. , 1985, Applied optics.

[9]  N. Engheta,et al.  Transition radiation caused by a chiral plate , 1982 .

[10]  Dwight L. Jaggard,et al.  On electromagnetic waves in chiral media , 1979 .

[11]  Jin Au Kong,et al.  Theory of electromagnetic waves , 1975 .

[12]  Jin Au Kong,et al.  Theorems of bianisotropic media , 1972 .

[13]  E. J. Post,et al.  Formal Structure of Electromagnetics , 1963 .

[14]  R. Collin Field theory of guided waves , 1960 .

[15]  A. Trier Guided electromagnetic waves in anisotropic media , 1953 .

[16]  M. Kales,et al.  Modes in Wave Guides Containing Ferrites , 1953 .

[17]  H. Gamo The Faraday Rotation of Waves in a Circular Waveguide , 1953 .

[18]  K. Lindman Über die durch ein aktives Raumgitter erzeugte Rotationspolarisation der elektromagnetischen Wellen , 1922 .

[19]  K. Lindman,et al.  Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elektromagnetischen Wellen , 1920 .