Transgenic ‘Hamlin’ sweet orange expressing csd1 or d4e1 genes exhibits decreased susceptibility to citrus canker disease

[1]  R. Azevedo,et al.  Plants facing oxidative challenges—A little help from the antioxidant networks , 2019, Environmental and Experimental Botany.

[2]  M. A. Machado,et al.  Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2 , 2016, Tropical Plant Pathology.

[3]  Wanpeng Xi,et al.  Antioxidant activity of Citrus fruits. , 2016, Food chemistry.

[4]  P. Gunasekaran,et al.  Critical Evaluation and Compilation of Physicochemical Determinants and Membrane Interactions of MMGP1 Antifungal Peptide. , 2016, Molecular pharmaceutics.

[5]  Tatiana de Souza Moraes Transformação genética de tomateiro (Solanum lycopersicum cv. \'Micro-Tom\') e de laranja doce (Citrus sinensis L. Osbeck) com o gene Csd1 (superóxido dismutase do cobre e do zinco), isolado de Poncirus trifoliata , 2015 .

[6]  S. Lindow,et al.  Expression of Xylella fastidiosa RpfF in citrus disrupts signaling in Xanthomonas citri subsp. citri and thereby its virulence. , 2014, Molecular plant-microbe interactions : MPMI.

[7]  Lísia Borges Attílio Transformação genética de laranja doce (Citrus sinensis L. Osbeck) com o gene D4E1 dirigido pelos promotores CaMV35S ou AtPP2 , 2013 .

[8]  E. Stover,et al.  Screening Antimicrobial Peptides In Vitro for Use in Developing Transgenic Citrus Resistant to Huanglongbing and Citrus Canker , 2013 .

[9]  U. Albrecht,et al.  Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. , 2012, Plant science : an international journal of experimental plant biology.

[10]  M. Alves-Ferreira,et al.  Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions , 2012, PloS one.

[11]  M. Machado,et al.  Breeding, genetic and genomic of citrus for disease resistance , 2011 .

[12]  A. Castagnaro,et al.  Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. , 2011, Plant biotechnology journal.

[13]  Ji-Hong Liu,et al.  Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration , 2011, BMC Plant Biology.

[14]  S. Dutt,et al.  The basic and applied aspects of superoxide dismutase , 2011 .

[15]  Victor Flors,et al.  Callose deposition: a multifaceted plant defense response. , 2011, Molecular plant-microbe interactions : MPMI.

[16]  B. J. Mendes,et al.  Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. , 2010 .

[17]  S. Beer,et al.  Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker , 2009 .

[18]  M. Gasparoto,et al.  Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. , 2008, Applied optics.

[19]  J. M. Dow,et al.  Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. , 2007, Molecular plant-microbe interactions : MPMI.

[20]  Franklin Behlau Epidemiologia do cancro cítrico (Xanthomonas axonopodis pv. citri) em laranja \'Pêra\' (Citrus sinensis) sob condições de controle químico e cultural , 2006 .

[21]  M. L. C. Vieira,et al.  Attacin A Gene from Tricloplusia ni Reduces Susceptibility to Xanthomonas axonopodis pv. citri in Transgenic Citrus sinensis 'Hamlin' , 2006 .

[22]  Maximina H. Yun,et al.  Xanthan Induces Plant Susceptibility by Suppressing Callose Deposition1[OA] , 2006, Plant Physiology.

[23]  Kanniah Rajasekaran,et al.  Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. , 2005, Plant biotechnology journal.

[24]  Waldir Cintra de Jesus Junior,et al.  Escalas diagramáticas para avaliação da severidade do cancro cítrico , 2005 .

[25]  Ricardo Antunes Azevedo,et al.  Making the life of heavy metal-stressed plants a little easier. , 2005, Functional plant biology : FPB.

[26]  R. Hancock,et al.  Immunomodulatory Activities of Small Host Defense Peptides , 2005, Antimicrobial Agents and Chemotherapy.

[27]  J. B. Júnior Dinâmica espacial do cancro cítrico, interação com a larva minadora dos citros (Phyllocnistis citrella) e diversidade genética do seu agente causal (Xanthomonas axonopodis PV. citri) , 2005 .

[28]  J. Graham,et al.  Screening Triploid Hybrids of 'Lakeland' Limequat for Resistance to Citrus Canker. , 2004, Plant disease.

[29]  A. Séguin,et al.  Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. , 2003, Tree physiology.

[30]  A. Moorman,et al.  Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data , 2003, Neuroscience Letters.

[31]  I. Sergiev,et al.  The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat , 2001 .

[32]  Cleveland,et al.  Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. , 2000, Plant science : an international journal of experimental plant biology.

[33]  T. Niidome,et al.  Effect of amino acid substitution in amphiphilic α‐helical peptides on peptide–phospholipid membrane interaction , 1999, Journal of peptide science : an official publication of the European Peptide Society.

[34]  R. Azevedo,et al.  Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley , 1998 .

[35]  R. Dixon,et al.  THE OXIDATIVE BURST IN PLANT DISEASE RESISTANCE. , 1997, Annual review of plant physiology and plant molecular biology.

[36]  J. Gabay Ubiquitous natural antibiotics. , 1994, Science.

[37]  T. Gottwald,et al.  Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determinated by leaf mesophyll susceptiblity , 1993 .

[38]  S. Swarup,et al.  An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. , 1992, Molecular plant-microbe interactions : MPMI.

[39]  C. N. Giannopolitis,et al.  Superoxide dismutases: I. Occurrence in higher plants. , 1977, Plant physiology.

[40]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[41]  L. Packer,et al.  Photoperoxidation in isolated chloroplasts. II. Role of electron transfer. , 1968, Archives of biochemistry and biophysics.

[42]  J. Grosser,et al.  Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants. , 2012, Tree physiology.

[43]  J. Cullen,et al.  Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue , 2010, Nature Protocols.

[44]  B. Zhang,et al.  Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. , 2008, Journal of integrative plant biology.

[45]  T. Gottwald,et al.  Penetration through leaf stomata and growth of strains of Xanthomonas campestris in citrus cultivars varying in susceptibility to bacterial diseases , 1992 .

[46]  E. Elstner Mechanisms of oxygen activation in different compartments of plant cells , 1991 .

[47]  T. Gottwald,et al.  Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex Smith) to Species and Reclassification of All X. campestris pv. citri Strains , 1989 .

[48]  G. Shaner The Effect of Nitrogen Fertilization on the Expression of Slow-Mildewing Resistance in Knox Wheat , 1977 .