Transgenic ‘Hamlin’ sweet orange expressing csd1 or d4e1 genes exhibits decreased susceptibility to citrus canker disease
暂无分享,去创建一个
R. Azevedo | J. Freitas-Astúa | R. Harakava | S. A. Gaziola | L. C. L. Stipp | Lísia Borges Attílio | T. Moraes | J. P. R. Marques | José Belasque Junior | Matheus Luís Docema | F. A. A. M. Mourão Filho
[1] R. Azevedo,et al. Plants facing oxidative challenges—A little help from the antioxidant networks , 2019, Environmental and Experimental Botany.
[2] M. A. Machado,et al. Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2 , 2016, Tropical Plant Pathology.
[3] Wanpeng Xi,et al. Antioxidant activity of Citrus fruits. , 2016, Food chemistry.
[4] P. Gunasekaran,et al. Critical Evaluation and Compilation of Physicochemical Determinants and Membrane Interactions of MMGP1 Antifungal Peptide. , 2016, Molecular pharmaceutics.
[5] Tatiana de Souza Moraes. Transformação genética de tomateiro (Solanum lycopersicum cv. \'Micro-Tom\') e de laranja doce (Citrus sinensis L. Osbeck) com o gene Csd1 (superóxido dismutase do cobre e do zinco), isolado de Poncirus trifoliata , 2015 .
[6] S. Lindow,et al. Expression of Xylella fastidiosa RpfF in citrus disrupts signaling in Xanthomonas citri subsp. citri and thereby its virulence. , 2014, Molecular plant-microbe interactions : MPMI.
[7] Lísia Borges Attílio. Transformação genética de laranja doce (Citrus sinensis L. Osbeck) com o gene D4E1 dirigido pelos promotores CaMV35S ou AtPP2 , 2013 .
[8] E. Stover,et al. Screening Antimicrobial Peptides In Vitro for Use in Developing Transgenic Citrus Resistant to Huanglongbing and Citrus Canker , 2013 .
[9] U. Albrecht,et al. Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. , 2012, Plant science : an international journal of experimental plant biology.
[10] M. Alves-Ferreira,et al. Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions , 2012, PloS one.
[11] M. Machado,et al. Breeding, genetic and genomic of citrus for disease resistance , 2011 .
[12] A. Castagnaro,et al. Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. , 2011, Plant biotechnology journal.
[13] Ji-Hong Liu,et al. Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration , 2011, BMC Plant Biology.
[14] S. Dutt,et al. The basic and applied aspects of superoxide dismutase , 2011 .
[15] Victor Flors,et al. Callose deposition: a multifaceted plant defense response. , 2011, Molecular plant-microbe interactions : MPMI.
[16] B. J. Mendes,et al. Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. , 2010 .
[17] S. Beer,et al. Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker , 2009 .
[18] M. Gasparoto,et al. Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. , 2008, Applied optics.
[19] J. M. Dow,et al. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. , 2007, Molecular plant-microbe interactions : MPMI.
[20] Franklin Behlau. Epidemiologia do cancro cítrico (Xanthomonas axonopodis pv. citri) em laranja \'Pêra\' (Citrus sinensis) sob condições de controle químico e cultural , 2006 .
[21] M. L. C. Vieira,et al. Attacin A Gene from Tricloplusia ni Reduces Susceptibility to Xanthomonas axonopodis pv. citri in Transgenic Citrus sinensis 'Hamlin' , 2006 .
[22] Maximina H. Yun,et al. Xanthan Induces Plant Susceptibility by Suppressing Callose Deposition1[OA] , 2006, Plant Physiology.
[23] Kanniah Rajasekaran,et al. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. , 2005, Plant biotechnology journal.
[24] Waldir Cintra de Jesus Junior,et al. Escalas diagramáticas para avaliação da severidade do cancro cítrico , 2005 .
[25] Ricardo Antunes Azevedo,et al. Making the life of heavy metal-stressed plants a little easier. , 2005, Functional plant biology : FPB.
[26] R. Hancock,et al. Immunomodulatory Activities of Small Host Defense Peptides , 2005, Antimicrobial Agents and Chemotherapy.
[27] J. B. Júnior. Dinâmica espacial do cancro cítrico, interação com a larva minadora dos citros (Phyllocnistis citrella) e diversidade genética do seu agente causal (Xanthomonas axonopodis PV. citri) , 2005 .
[28] J. Graham,et al. Screening Triploid Hybrids of 'Lakeland' Limequat for Resistance to Citrus Canker. , 2004, Plant disease.
[29] A. Séguin,et al. Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. , 2003, Tree physiology.
[30] A. Moorman,et al. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data , 2003, Neuroscience Letters.
[31] I. Sergiev,et al. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat , 2001 .
[32] Cleveland,et al. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. , 2000, Plant science : an international journal of experimental plant biology.
[33] T. Niidome,et al. Effect of amino acid substitution in amphiphilic α‐helical peptides on peptide–phospholipid membrane interaction , 1999, Journal of peptide science : an official publication of the European Peptide Society.
[34] R. Azevedo,et al. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley , 1998 .
[35] R. Dixon,et al. THE OXIDATIVE BURST IN PLANT DISEASE RESISTANCE. , 1997, Annual review of plant physiology and plant molecular biology.
[36] J. Gabay. Ubiquitous natural antibiotics. , 1994, Science.
[37] T. Gottwald,et al. Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determinated by leaf mesophyll susceptiblity , 1993 .
[38] S. Swarup,et al. An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. , 1992, Molecular plant-microbe interactions : MPMI.
[39] C. N. Giannopolitis,et al. Superoxide dismutases: I. Occurrence in higher plants. , 1977, Plant physiology.
[40] M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.
[41] L. Packer,et al. Photoperoxidation in isolated chloroplasts. II. Role of electron transfer. , 1968, Archives of biochemistry and biophysics.
[42] J. Grosser,et al. Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants. , 2012, Tree physiology.
[43] J. Cullen,et al. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue , 2010, Nature Protocols.
[44] B. Zhang,et al. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. , 2008, Journal of integrative plant biology.
[45] T. Gottwald,et al. Penetration through leaf stomata and growth of strains of Xanthomonas campestris in citrus cultivars varying in susceptibility to bacterial diseases , 1992 .
[46] E. Elstner. Mechanisms of oxygen activation in different compartments of plant cells , 1991 .
[47] T. Gottwald,et al. Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex Smith) to Species and Reclassification of All X. campestris pv. citri Strains , 1989 .
[48] G. Shaner. The Effect of Nitrogen Fertilization on the Expression of Slow-Mildewing Resistance in Knox Wheat , 1977 .