Performance analysis of reset control systems

In this paper we present a general linear matrix inequality-based analysis method to determine the performance of a SISO reset control system in both the ℒ2 gain and ℋ2 sense. In particular, we derive convex optimization problems in terms of LMIs to compute an upperbound on the ℒ2 gain performance and the ℋ2 norm, using dissipativity theory with piecewise quadratic Lyapunov functions. The results are applicable to for all LTI plants and linear-based reset controllers, thereby generalizing the available results in the literature. Furthermore, we provide simple though convincing examples to illustrate the accuracy of our proposed ℒ2 gain and ℋ2 norm calculations and show that, for an input constrained ℋ2 problem, reset control can outperform a linear controller designed by a common nonlinear optimization method. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  R. Decarlo,et al.  Variable structure control of nonlinear multivariable systems: a tutorial , 1988, Proc. IEEE.

[2]  Sundeep Rangan Multiobjective H ∞ problems: linear and nonlinear control , 1997 .

[3]  I︠a︡. Z. T︠S︡ypkin Relay Control Systems , 1985 .

[4]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[5]  Whtm Wouter Aangenent,et al.  Nonlinear control for linear motion systems : an exploratory study , 2004 .

[6]  Christopher V. Hollot,et al.  Stability and asymptotic performance analysis of a class of reset control systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[7]  Wassim M. Haddad,et al.  Nonlinear impulsive dynamical systems. I. Stability and dissipativity , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[8]  Christopher V. Hollot,et al.  Analysis of reset control systems consisting of a FORE and second-order loop , 2001 .

[9]  Orhan Beker,et al.  On establishing classic performance measures for reset control systems , 2001 .

[10]  J. C. Clegg A nonlinear integrator for servomechanisms , 1958, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.

[11]  Y. Chait,et al.  On the zero-input stability of control systems with Clegg integrators , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[12]  I. Horowitz,et al.  Non-linear design for cost of feedback reduction in systems with large parameter uncertainty † , 1975 .

[13]  C. Hollot,et al.  FUNDAMENTAL PROPERTIES OF RESET CONTROL SYSTEMS , 2002 .

[14]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[15]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[16]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[17]  Christopher V. Hollot,et al.  On Horowitz's contributions to reset control , 2002 .

[18]  Isaac Horowitz,et al.  Synthesis of a non-linear feedback system with significant plant-ignorance for prescribed system tolerances† , 1974 .

[19]  Orhan Beker,et al.  Stability of a reset control system under constant inputs , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[20]  K. Poolla,et al.  Uniformly optimal control of linear time-invariant plants: Nonlinear time-varying controllers , 1986 .

[21]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[22]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[23]  M Maarten Steinbuch,et al.  Experimental demonstration of reset control design , 2000 .

[24]  Chantal Wouters,et al.  An exploratory study , 2003 .

[25]  L. Zaccarian,et al.  Set-point stabilization of SISO linear systems using First Order Reset Elements , 2007, 2007 American Control Conference.

[26]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[27]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[28]  L. Zaccarian,et al.  First order reset elements and the Clegg integrator revisited , 2005, Proceedings of the 2005, American Control Conference, 2005..

[29]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[30]  K. C. Wong,et al.  Plant With Integrator: An Example of Reset Control Overcoming Limitations of Linear Feedback , 2001 .

[31]  Luca Zaccarian,et al.  Stability properties of reset systems , 2008, Autom..

[32]  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1998, IEEE Trans. Autom. Control..

[33]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..