Design an intelligent proportional-derivative (PD) feedback linearization control for nonholonomic-wheeled mobile robot

This paper proposes a novel optimal Proportional--derivative PD Feedback linearization controller to achieve the best trajectory tracking for nonholonomic Wheeled Mobile Robots WMRs. In the core of the proposed method, a novel population-based optimization technique, called Teaching-Learning-Based Optimization TLBO, is employed for evolving the PD controller. The proposed controller can handle the problem of the integrated kinematic and dynamic tracking difficulty. To show the effectiveness of the proposed method, the performance of the optimal TLBO-PD controller is compared with the optimal PSO-PD controller. Simulation results demonstrate the superiority of the proposed control scheme.

[1]  Jun-Ho Oh,et al.  Tracking control of a two-wheeled mobile robot using inputoutput linearization , 1999 .

[2]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[3]  Xiaoping Yun,et al.  Coordinating locomotion and manipulation of a mobile manipulator , 1994 .

[4]  Claude Samson,et al.  Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[5]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..

[6]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[7]  Hamidreza Modares,et al.  Parameter estimation of bilinear systems based on an adaptive particle swarm optimization , 2010, Eng. Appl. Artif. Intell..

[8]  Ryozo Katoh,et al.  Robust adaptive motion/force tracking control of uncertain nonholonomic mechanical systems , 2003, IEEE Trans. Robotics Autom..

[9]  Aiguo Ming,et al.  Adaptive Robust Trajectory and Force Tracking Control of Constrained Mobile Manipulators , 2007, 2007 International Conference on Mechatronics and Automation.

[10]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[11]  Russell C. Eberhart,et al.  The particle swarm: social adaptation in information-processing systems , 1999 .

[12]  Warren E. Dixon,et al.  Tracking and Regulation Control of a Mobile Robot System With Kinematic Disturbances: A Variable Structure-Like Approach , 2000 .

[13]  A. Isidori Nonlinear Control Systems , 1985 .

[14]  G. Campion,et al.  Modelling and state feedback control of nonholonomic mechanical systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[15]  Urbano Nunes,et al.  Lie algebra application to mobile robot control: a tutorial , 2003, Robotica.

[16]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[17]  R. Murray,et al.  Exponential stabilization of driftless nonlinear control systems using homogeneous feedback , 1997, IEEE Trans. Autom. Control..

[18]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[19]  Klaus-Dieter Kuhnert,et al.  Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties , 2005, IEEE Transactions on Robotics.

[20]  Alireza Mohammad Shahri,et al.  Adaptive feedback linearizing control of nonholonomic wheeled mobile robots in presence of parametric and nonparametric uncertainties , 2011 .

[21]  Qijun Chen,et al.  Trajectory tracking control of a nonholonomic mobile robot , 2010, IEEE ICCA 2010.

[22]  Mohammad Hassan Khooban,et al.  Optimal Intelligent Control for HVAC Systems , 2012 .

[23]  Georges Bastin,et al.  Dynamic feedback linearization of nonholonomic wheeled mobile robots , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[24]  A. Isidori,et al.  Adaptive control of linearizable systems , 1989 .

[25]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[26]  Urbano Nunes,et al.  Path-following control of mobile robots in presence of uncertainties , 2005, IEEE Transactions on Robotics.

[27]  Mohammad Hassan Khooban,et al.  Control of a class of non-linear uncertain chaotic systems via an optimal Type-2 fuzzy proportional integral derivative controller , 2013 .

[28]  A Srebro,et al.  A self-tuning fuzzy PD controller for a wheeled mobile robot operating in the presence of faults , 2011 .

[29]  E. Paljug,et al.  Control of multiple arms with rolling constraints , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[30]  Mohammad Hassan Khooban,et al.  Swarm optimization tuned fuzzy sliding mode control design for a class of nonlinear systems in presence of uncertainties , 2013, J. Intell. Fuzzy Syst..

[31]  Shangxu Hu,et al.  A New Approach to Improve Particle Swarm Optimization , 2003, GECCO.

[32]  Mohammad Hassan Khooban,et al.  Teaching-learning-based optimal interval type-2 fuzzy PID controller design: a nonholonomic wheeled mobile robots , 2013, Robotica.

[33]  João P. Hespanha,et al.  Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty , 2007, IEEE Transactions on Automatic Control.

[34]  Georges Bastin,et al.  Structural properties and classification of kinematic and dynamic models of wheeled mobile robots , 1996, IEEE Trans. Robotics Autom..

[35]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[36]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .