Design of submicrometer CMOS differential pass-transistor logic circuits

The interaction between the architectural features of CMOS differential pass-transistor logic (DPTL) and the submicron process technology used to implement it are examined. Techniques that exploit the noise immunity associated with the DPTL architecture are presented to effectively enable signal-swing reductions that result in increased speed. The extent to which DPTL can benefit from this signal-swing/speed tradeoff is examined by investigating the impact of device scaling on DPTL operation. A novel DPTL buffer that enables the implementation of a single-phase clocking scheme and the exchange of signal swing for increased circuit speed is proposed. Experimental results are provided. >