Automatic Machine Knitting of 3D Meshes

We present the first computational approach that can transform three-dimensional (3D) meshes, created by traditional modeling programs, directly into instructions for a computer-controlled knitting machine. Knitting machines are able to robustly and repeatably form knitted 3D surfaces from yarn but have many constraints on what they can fabricate. Given user-defined starting and ending points on an input mesh, our system incrementally builds a helix-free, quad-dominant mesh with uniform edge lengths, runs a tracing procedure over this mesh to generate a knitting path, and schedules the knitting instructions for this path in a way that is compatible with machine constraints. We demonstrate our approach on a wide range of 3D meshes.

[1]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[2]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[3]  Steve Marschner,et al.  Stitch meshes for modeling knitted clothing with yarn-level detail , 2012, ACM Trans. Graph..

[4]  Eder Miguel,et al.  CurveUps , 2017, ACM Trans. Graph..

[5]  Miguel A. Otaduy,et al.  Efficient simulation of knitted cloth using persistent contacts , 2015, Symposium on Computer Animation.

[6]  Takeo Igarashi,et al.  Knitty: 3D Modeling of Knitted Animals with a Production Assistant Interface , 2008, Eurographics.

[7]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[8]  sarah-marie belcastro,et al.  Every topological surface can be knit: a proof , 2009 .

[9]  David Bommes,et al.  Global Structure Optimization of Quadrilateral Meshes , 2011, Comput. Graph. Forum.

[10]  Doug L. James,et al.  Efficient yarn-based cloth with adaptive contact linearization , 2010, ACM Trans. Graph..

[11]  B. Eberhardt,et al.  The Art of Knitted Fabrics, Realistic & Physically Based Modelling of Knitted Patterns , 1998, Comput. Graph. Forum.

[12]  J Underwood The design of 3D shape knitted preforms , 2009 .

[13]  Eitan Grinspun,et al.  Designing inflatable structures , 2014, ACM Trans. Graph..

[14]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[15]  Philippe Block,et al.  Automated Generation of Knit Patterns for Non-developable Surfaces , 2018 .

[16]  Takeo Igarashi,et al.  Knitting a 3D Model , 2008, Comput. Graph. Forum.

[17]  Markus H. Gross,et al.  Computational Design of Rubber Balloons , 2012, Comput. Graph. Forum.

[18]  Keenan Crane,et al.  Stripe patterns on surfaces , 2015, ACM Trans. Graph..

[19]  Steve Marschner,et al.  Efficient yarn-based cloth with adaptive contact linearization , 2010, SIGGRAPH 2010.

[20]  Wojciech Matusik,et al.  A compiler for 3D machine knitting , 2016, ACM Trans. Graph..

[21]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[22]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[23]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[24]  CorosStelian,et al.  Automatic Machine Knitting of 3D Meshes , 2018 .

[25]  Ali Mahdavi-Amiri,et al.  Cover-it: an interactive system for covering 3d prints , 2015, Graphics Interface.

[26]  Bruno Lévy,et al.  Spectral Mesh Processing , 2009, SIGGRAPH '10.

[27]  Steve Marschner,et al.  Simulating knitted cloth at the yarn level , 2008, ACM Trans. Graph..