Spectral approximation of quadratic operator polynomials arising in photonic band structure calculations

Galerkin spectral approximation theory for non-self-adjoint quadratic operator polynomials with periodic coefficients is considered. The main applications are complex band structure calculations in metallic photonic crystals, periodic waveguides, and metamaterials. We show that the spectrum of the considered operator polynomials consists of isolated eigenvalues of finite multiplicity with a nonzero imaginary part. The spectral problem is equivalent to a non-compact block operator matrix and norm convergence is shown for a block operator matrix having the same generalized eigenvectors as the original operator. Convergence rates of finite element discretizations are considered and numerical experiments with the $$p$$p-version and the $$h$$h-version of the finite element method confirm the theoretical convergence rates.

[1]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[2]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[3]  William G. Kolata,et al.  Approximation in variationally posed eigenvalue problems , 1978 .

[4]  Kersten Schmidt,et al.  A multiscale hp-FEM for 2D photonic crystal bands , 2011, J. Comput. Phys..

[5]  Ricardo G. Durán,et al.  Finite Element Analysis of a Quadratic Eigenvalue Problem Arising in Dissipative Acoustics , 2000, SIAM J. Numer. Anal..

[6]  J. Rappaz,et al.  On spectral approximation. Part 1. The problem of convergence , 1978 .

[7]  R. Kappeler,et al.  Efficient computation of photonic crystal waveguide modes with dispersive material. , 2010, Optics express.

[8]  I. Babuška,et al.  The h-p version of the finite element method , 1986 .

[9]  A. Markus,et al.  Introduction to the Spectral Theory of Polynomial Operator Pencils , 2012 .

[10]  Edward H. Sargent,et al.  Photonic crystal heterostructures and interfaces , 2006 .

[11]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[12]  E. Sargent,et al.  Behavior of light at photonic crystal interfaces , 2005 .

[13]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[14]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[15]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[16]  Christian Lage,et al.  Concepts: An object-oriented software package for partial differential equations , 2002 .

[17]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[18]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[19]  Tosio Kato Perturbation theory for linear operators , 1966 .

[20]  J. Osborn Spectral approximation for compact operators , 1975 .

[21]  K. Schmidt,et al.  Computation of the band structure of two-dimensional photonic crystals with hp finite elements , 2009 .

[22]  Kurt Busch,et al.  The Wannier function approach to photonic crystal circuits , 2003 .

[23]  C. Engström,et al.  Complex dispersion relation calculations with the symmetric interior penalty method , 2010 .

[24]  Gennady Shvets,et al.  The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction. , 2007, Optics express.

[25]  D. Kressner,et al.  Linearization techniques for band structure calculations in absorbing photonic crystals , 2012 .

[26]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[27]  The h–p version of the finite element method for problems with interfaces , 1994 .

[28]  Markus Richter,et al.  On the Spectrum of an Operator Pencil with Applications to Wave Propagation in Periodic and Frequency Dependent Materials , 2008, SIAM J. Appl. Math..

[29]  I. Babuska,et al.  The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .

[30]  Qing Huo Liu,et al.  Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  G. M. Vainikko On the speed of convergence of approximate methods in the eigenvalue problem , 1967 .

[32]  Sonia Fliss,et al.  A Dirichlet-to-Neumann Approach for The Exact Computation of Guided Modes in Photonic Crystal Waveguides , 2012, SIAM J. Sci. Comput..

[33]  C. Engström ON THE SPECTRUM OF A HOLOMORPHIC OPERATOR-VALUED FUNCTION WITH APPLICATIONS TO ABSORPTIVE PHOTONIC CRYSTALS , 2010 .

[34]  JEAN DESCLOUX,et al.  On spectral approximation. Part 2. Error estimates for the Galerkin method , 1978 .

[35]  Otto Karma,et al.  Approximation in eigenvalue problems for holomorphic fredholm operator functions I , 1996 .

[36]  Stefano Giani,et al.  Adaptive finite element methods for computing band gaps in photonic crystals , 2012, Numerische Mathematik.

[37]  H. Elman,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Non-self-adjoint Quadratic Eigenvalue Problem Describing a Fluid-solid Interaction. Part Ii: Analysis of Convergence a Non-self-adjoint Quadratic Eigenvalue Problem Describing a Fluid-solid Interaction Part Ii: Analysis of Convergence , 2022 .

[38]  J. Joannopoulos,et al.  Nature of lossy Bloch states in polaritonic photonic crystals , 2004 .

[39]  Otto Karma,et al.  Approximation in eigenvalue problems for holomorphic fredholm operator functions Ii (Convergence Rate) , 1996 .

[40]  Kersten Schmidt,et al.  Computations of lossy Bloch waves in two-dimensional photonic crystals , 2009 .