Spectral approximation of quadratic operator polynomials arising in photonic band structure calculations
暂无分享,去创建一个
[1] Ivo Babuška,et al. The h-p version of the finite element method , 1986 .
[2] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[3] William G. Kolata,et al. Approximation in variationally posed eigenvalue problems , 1978 .
[4] Kersten Schmidt,et al. A multiscale hp-FEM for 2D photonic crystal bands , 2011, J. Comput. Phys..
[5] Ricardo G. Durán,et al. Finite Element Analysis of a Quadratic Eigenvalue Problem Arising in Dissipative Acoustics , 2000, SIAM J. Numer. Anal..
[6] J. Rappaz,et al. On spectral approximation. Part 1. The problem of convergence , 1978 .
[7] R. Kappeler,et al. Efficient computation of photonic crystal waveguide modes with dispersive material. , 2010, Optics express.
[8] I. Babuška,et al. The h-p version of the finite element method , 1986 .
[9] A. Markus,et al. Introduction to the Spectral Theory of Polynomial Operator Pencils , 2012 .
[10] Edward H. Sargent,et al. Photonic crystal heterostructures and interfaces , 2006 .
[11] S. Maier. Plasmonics: Fundamentals and Applications , 2007 .
[12] E. Sargent,et al. Behavior of light at photonic crystal interfaces , 2005 .
[13] P. Kuchment. Floquet Theory for Partial Differential Equations , 1993 .
[14] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[15] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[16] Christian Lage,et al. Concepts: An object-oriented software package for partial differential equations , 2002 .
[17] Kazuaki Sakoda,et al. Optical Properties of Photonic Crystals , 2001 .
[18] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[19] Tosio Kato. Perturbation theory for linear operators , 1966 .
[20] J. Osborn. Spectral approximation for compact operators , 1975 .
[21] K. Schmidt,et al. Computation of the band structure of two-dimensional photonic crystals with hp finite elements , 2009 .
[22] Kurt Busch,et al. The Wannier function approach to photonic crystal circuits , 2003 .
[23] C. Engström,et al. Complex dispersion relation calculations with the symmetric interior penalty method , 2010 .
[24] Gennady Shvets,et al. The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction. , 2007, Optics express.
[25] D. Kressner,et al. Linearization techniques for band structure calculations in absorbing photonic crystals , 2012 .
[26] M. Kreĭn,et al. Introduction to the theory of linear nonselfadjoint operators , 1969 .
[27] The h–p version of the finite element method for problems with interfaces , 1994 .
[28] Markus Richter,et al. On the Spectrum of an Operator Pencil with Applications to Wave Propagation in Periodic and Frequency Dependent Materials , 2008, SIAM J. Appl. Math..
[29] I. Babuska,et al. The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .
[30] Qing Huo Liu,et al. Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.
[31] G. M. Vainikko. On the speed of convergence of approximate methods in the eigenvalue problem , 1967 .
[32] Sonia Fliss,et al. A Dirichlet-to-Neumann Approach for The Exact Computation of Guided Modes in Photonic Crystal Waveguides , 2012, SIAM J. Sci. Comput..
[33] C. Engström. ON THE SPECTRUM OF A HOLOMORPHIC OPERATOR-VALUED FUNCTION WITH APPLICATIONS TO ABSORPTIVE PHOTONIC CRYSTALS , 2010 .
[34] JEAN DESCLOUX,et al. On spectral approximation. Part 2. Error estimates for the Galerkin method , 1978 .
[35] Otto Karma,et al. Approximation in eigenvalue problems for holomorphic fredholm operator functions I , 1996 .
[36] Stefano Giani,et al. Adaptive finite element methods for computing band gaps in photonic crystals , 2012, Numerische Mathematik.
[37] H. Elman,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Non-self-adjoint Quadratic Eigenvalue Problem Describing a Fluid-solid Interaction. Part Ii: Analysis of Convergence a Non-self-adjoint Quadratic Eigenvalue Problem Describing a Fluid-solid Interaction Part Ii: Analysis of Convergence , 2022 .
[38] J. Joannopoulos,et al. Nature of lossy Bloch states in polaritonic photonic crystals , 2004 .
[39] Otto Karma,et al. Approximation in eigenvalue problems for holomorphic fredholm operator functions Ii (Convergence Rate) , 1996 .
[40] Kersten Schmidt,et al. Computations of lossy Bloch waves in two-dimensional photonic crystals , 2009 .