Automated Diagnosis of Glaucoma Using Texture and Higher Order Spectra Features
暂无分享,去创建一个
U. Rajendra Acharya | Subbhuraam Vinitha Sree | Chua Kuang Chua | Sumeet Dua | Xian Du | C. K. Chua | U. Acharya | S. V. Sree | S. Dua | Usha R. Acharya | Xian Du | C. Chua | Vinitha Sree S
[1] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[2] Chao Chen,et al. Using Random Forest to Learn Imbalanced Data , 2004 .
[3] John C. Platt,et al. Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .
[4] Stuart L. Graham,et al. Neural Network Model for Early Detection of Glaucoma using Multi-focal Visual Evoked Potential (M-VEP) , 2002 .
[5] U. Rajendra Acharya,et al. Application of Higher Order Spectra for the Identification of Diabetes Retinopathy Stages , 2008, Journal of Medical Systems.
[6] Azriel Rosenfeld,et al. An application of texture analysis to materials inspection , 1976, Pattern Recognit..
[7] C. M. Lim,et al. Cardiac state diagnosis using higher order spectra of heart rate variability , 2008, Journal of medical engineering & technology.
[8] Gustavo Santos-García,et al. Identification of Glaucoma Stages with Artificial Neural Networks Using Retinal Nerve Fibre Layer Analysis and Visual Field Parameters , 2008, Innovations in Hybrid Intelligent Systems.
[9] Mary M. Galloway,et al. Texture analysis using gray level run lengths , 1974 .
[10] Sumeet Dua,et al. Protein Structure Classification Based on Conserved Hydrophobic Residues , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[11] Yanjun Qi,et al. Random Forest Similarity for Protein-Protein Interaction Prediction from Multiple Sources , 2004, Pacific Symposium on Biocomputing.
[12] C. L. Nikias,et al. Higher-order spectra analysis : a nonlinear signal processing framework , 1993 .
[13] Robert N Weinreb,et al. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. , 2002, Investigative ophthalmology & visual science.
[14] C. M. Lim,et al. Analysis of epileptic EEG signals using higher order spectra , 2009, Journal of medical engineering & technology.
[15] Hsin-Yi Chen,et al. Linear discriminant analysis and artificial neural network for glaucoma diagnosis using scanning laser polarimetry–variable cornea compensation measurements in Taiwan Chinese population , 2010, Graefe's Archive for Clinical and Experimental Ophthalmology.
[16] Vinod Chandran,et al. Pattern Recognition Using Invariants Defined From Higher Order Spectra- One Dimensional Inputs , 1993, IEEE Trans. Signal Process..
[17] A. Coleman,et al. Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. , 2002, Investigative ophthalmology & visual science.
[18] Mei-Ling Huang,et al. Glaucoma detection using adaptive neuro-fuzzy inference system , 2007, Expert Syst. Appl..
[19] E. Y. K. Ng,et al. Study of normal ocular thermogram using textural parameters , 2010 .
[20] U. Rajendra Acharya,et al. Automated Diagnosis of Glaucoma Using Digital Fundus Images , 2009, Journal of Medical Systems.
[21] Anders Heijl,et al. Trained Artificial Neural Network for Glaucoma Diagnosis Using Visual Field Data: A Comparison With Conventional Algorithms , 2007, Journal of glaucoma.
[22] S. Sitharama Iyengar,et al. A Framework for Detecting Glaucomatous Progression in the Optic Nerve Head of an Eye Using Proper Orthogonal Decomposition , 2009, IEEE Transactions on Information Technology in Biomedicine.