From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015

[1]  Stefan Pauliuk,et al.  Steel all over the world: Estimating in-use stocks of iron for 200 countries , 2013 .

[2]  Daniel B. Müller,et al.  Characterizing the role of built environment stocks in human development and emission growth , 2017 .

[3]  Jianguo Liu,et al.  A looming tragedy of the sand commons , 2017, Science.

[4]  Daniel B. Müller,et al.  The Role of In-Use Stocks in the Social Metabolism and in Climate Change Mitigation , 2013 .

[5]  Fridolin Krausmann,et al.  The global metabolic transition: Regional patterns and trends of global material flows, 1950–2010 , 2014, Global environmental change : human and policy dimensions.

[6]  J. Finnigan,et al.  Losses, inefficiencies and waste in the global food system , 2017, Agricultural systems.

[7]  John L. Sznopek,et al.  Historical Statistics for Mineral Commodities in the United States , 2001 .

[8]  J. Duro,et al.  Metabolic Inequality and Its Impact on Efficient Contraction and Convergence of International Material Resource Use , 2018 .

[9]  L. Bartoňová Unburned carbon from coal combustion ash: An overview , 2015 .

[10]  Stefan Wirsenius,et al.  Human Use of Land and Organic Materials: Modeling the Turnover of Biomass in the Global Food System , 2000 .

[11]  H. Haberl,et al.  Growth in global materials use, GDP and population during the 20th century , 2009 .

[12]  M. Gavriletea Environmental Impacts of Sand Exploitation. Analysis of Sand Market , 2017 .

[13]  Rolf Widmer,et al.  Modeling metal stocks and flows: a review of dynamic material flow analysis methods. , 2014, Environmental science & technology.

[14]  Heinz Schandl,et al.  Resource use and resource efficiency in the Asia-Pacific region , 2010 .

[15]  Stefan Giljum,et al.  Global Patterns of Material Flows and their Socio-Economic and Environmental Implications: A MFA Study on All Countries World-Wide from 1980 to 2009 , 2014 .

[16]  H. Haberl,et al.  Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems , 2007, Proceedings of the National Academy of Sciences.

[17]  B. Jefferson,et al.  The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology , 2015, Critical reviews in environmental science and technology.

[18]  Heinz Schandl,et al.  Material Flow Accounting: Measuring Global Material Use for Sustainable Development , 2017 .

[19]  A. Tukker,et al.  Ossified materialism: introduction to the special volume on absolute reductions in materials throughput and emissions , 2016 .

[20]  Ian Roberts,et al.  The weight of nations: an estimation of adult human biomass , 2012, BMC Public Health.

[21]  Lei Shen,et al.  Elaborating the History of Our Cementing Societies: An in-Use Stock Perspective. , 2017, Environmental science & technology.

[22]  Manfred Lenzen,et al.  Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions , 2016 .

[23]  Investigation into properties of unburned carbon in coal combustion fly ash , 2012 .

[24]  Laixiang Sun,et al.  Global carbon inequality , 2017 .

[25]  Helmut Haberl,et al.  Global socioeconomic carbon stocks in long-lived products 1900–2008 , 2012 .

[26]  Zbigniew Klimont,et al.  Anthropogenic sulfur dioxide emissions: 1850–2005 , 2010 .

[27]  Manfred Lenzen,et al.  Global Material Flows and Resource Productivity: Forty Years of Evidence , 2018 .

[28]  Stefan Bringezu,et al.  Possible target corridor for sustainable use of global material resources , 2015 .

[29]  Yi-Ming Wei,et al.  Unequal household carbon footprints in China , 2017 .

[30]  Yuichi Moriguchi,et al.  Material Flow Analysis and Waste Management , 2016 .

[31]  G. Fahey,et al.  Alteration of the fiber and lipid components of a defined-formula diet: effects on stool characteristics, nutrient digestibility, mineral balance, and energy metabolism in humans. , 1995, The American journal of clinical nutrition.

[32]  Helmut Schütz,et al.  Economy -wide Material Flow Accounting Introduction and Guide , 2015 .

[33]  Jan Kovanda,et al.  Material flow accounts, balances and derived indicators for the Czech Republic during the 1990s: results and recommendations for methodological improvements , 2003 .

[34]  K. Acheson,et al.  Calcium supplementation of chocolate: effect on cocoa butter digestibility and blood lipids in humans. , 2001, The American journal of clinical nutrition.

[35]  Saeid R. Dindarloo,et al.  Prediction of the Unburned Carbon Content of Fly Ash in Coal-Fired Power Plants , 2015 .

[36]  Kim Starr Forest,et al.  Feedipedia Animal feed resourcesinformation system , 2016 .

[37]  T. Gutowski,et al.  Material efficiency: A white paper , 2011 .

[38]  Stefan Bringezu,et al.  Analysing global resource use of national and regional economies across various levels , 2009 .

[39]  S. Carpenter,et al.  Planetary boundaries: Guiding human development on a changing planet , 2015, Science.

[40]  J. Martínez-Alier,et al.  Hegemonic transitions and global shifts in social metabolism: Implications for resource-rich countries. Introduction to the special section , 2012 .

[41]  Iea Iiasa Oecd Energy and Air Pollution: World Energy Outlook Special Report 2016 , 2016 .

[42]  D. Jenkins,et al.  Carbohydrate digestibility and metabolic effects. , 2007, The Journal of nutrition.

[43]  D. Juchelková,et al.  On Unburned Carbon in Coal Ash from Various Combustion Units , 2011 .

[44]  T. Fishman,et al.  Global Patterns and Trends for Non‐Metallic Minerals used for Construction , 2017 .

[45]  Daniel B. Müller,et al.  Centennial evolution of aluminum in-use stocks on our aluminized planet. , 2013, Environmental science & technology.

[46]  Jorg Baten,et al.  Global Height Trends and the Determinants of Anthropometric Welfare, 1810s - 1980s , 2010 .

[47]  F. Krausmann,et al.  How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005 , 2015 .

[48]  Heinz Schandl,et al.  The Global Sociometabolic Transition , 2008 .

[49]  Sami Kara,et al.  Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages , 2018 .

[50]  H. Weisz,et al.  Transitions in Sociometabolic Regimes Throughout Human History , 2016 .

[51]  Helmut Haberl,et al.  Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use , 2017, Proceedings of the National Academy of Sciences.

[52]  H. Belshaw,et al.  The Food and Agriculture Organization of the United Nations , 1947, International Organization.

[53]  A. Klerk,et al.  Desulfurization of heavy oil , 2012, Applied Petrochemical Research.

[54]  Helmut Haberl,et al.  The Material Stock–Flow–Service Nexus: A New Approach for Tackling the Decoupling Conundrum , 2017 .

[55]  Vimal Chandra Srivastava,et al.  An evaluation of desulfurization technologies for sulfur removal from liquid fuels , 2012 .

[56]  Allen S. Lefohn,et al.  Estimating historical anthropogenic global sulfur emission patterns for the period 1850–1990☆ , 1999 .

[57]  Dong Liu,et al.  A New Route for Unburned Carbon Concentration Measurements Eliminating Mineral Content and Coal Rank Effects , 2014, Scientific Reports.

[58]  Elena Verdolini,et al.  Energy Intensity Developments in 40 Major Economies: Structural Change or Technology Improvement? , 2013 .

[59]  Yuichi Moriguchi,et al.  Proposal of six indicators of material cycles for describing society's metabolism: from the viewpoint of material flow analysis , 2004 .

[60]  Roland Clift,et al.  Consider a Spherical Man - A Simple Model to Include Human Excretion in Life Cycle Assessment of Food Products , 2008 .

[61]  Matthias Ruth,et al.  An industrial ecology of the US glass industry , 1997 .

[62]  M. Swilling,et al.  Decoupling : natural resource use and environmental impacts from economic growth , 2011 .

[63]  Glen P. Peters,et al.  Warning signs for stabilizing global CO2 emissions , 2017 .

[64]  Gregg Marland,et al.  How Uncertain Are Estimates of CO2 Emissions? , 2009 .

[65]  Gretchen A. Stevens,et al.  National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants , 2011, The Lancet.

[66]  Gregg Marland,et al.  Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950-1982 , 1984 .

[67]  J. Baten,et al.  Growing Tall but Unequal: New Findings and New Background Evidence on Anthropometric Welfare in 156 Countries, 1810–1989 , 2012 .

[68]  H. Weisz,et al.  Methodology and Indicators of Economy‐wide Material Flow Accounting , 2011 .

[69]  H. Weisz,et al.  The Weight of Nations : Material Outflows from Industrial Economies , 2000 .

[70]  Helmut Haberl,et al.  Global human appropriation of net primary production doubled in the 20th century , 2013, Proceedings of the National Academy of Sciences.

[71]  Hiroki Tanikawa,et al.  Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis , 2013 .

[72]  Gang Liu,et al.  Carbon emissions of infrastructure development. , 2013, Environmental science & technology.

[73]  S. Ulgiati,et al.  A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems , 2016 .

[74]  J. Randers,et al.  Tracking the ecological overshoot of the human economy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. M. Perez,et al.  Tables of composition and nutritional value of primary materials destined for stock animals: pigs, poultry, cattle, sheep, goats, rabbits, horses, fish. , 2002 .

[76]  Board on Agriculture Nutrient Requirements of Dairy Cattle , 2016 .

[77]  Helmut Haberl,et al.  Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints , 2008 .

[78]  D. Tilman,et al.  Global diets link environmental sustainability and human health , 2014, Nature.

[79]  Michael Obersteiner,et al.  Assessing global resource use and greenhouse emissions to 2050, with ambitious resource efficiency and climate mitigation policies , 2017 .

[80]  T. Chakrabarti,et al.  Flue Gas Desulfurization: Physicochemical and Biotechnological Approaches , 2005 .

[81]  Ernst Worrell,et al.  Metal scarcity and sustainability, analyzing the necessity to reduce the extraction of scarce metals , 2014 .

[82]  M. Obersteiner,et al.  Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems , 2013, Proceedings of the National Academy of Sciences.

[83]  P. Crutzen,et al.  The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature , 2007, Ambio.

[84]  S. Glöser,et al.  Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation. , 2013, Environmental science & technology.

[85]  Oswer,et al.  Advancing Sustainable Materials Management: Facts and Figures , 2015 .