Carbon-Based Materials for Thermoelectrics

This article reviews the recent progress towards achieving carbon-based thermoelectric materials. A wide range of experimental and computational studies on carbon allotropes and composites is covered in this review paper. Specifically, we discuss the strategies for engineering graphene, graphene nanoribbon, graphene nanomesh, graphene nanowiggle, carbon nanotube (CNT), fullerene, graphyne, and carbon quantum dot for better thermoelectric performance. Moreover, we discuss the most recent advances in CNT/graphene-polymer composites and the related challenges and solutions. We also highlight the important charge and heat transfer mechanisms in carbon-based materials and state-of-the-art strategies for enhancing thermoelectric performance. Finally, we provide an outlook towards the future of carbon-based thermoelectrics.

[1]  Meifang Zhu,et al.  Preparation and thermoelectric properties of multi-walled carbon nanotube/polyaniline hybrid nanocomposites , 2013 .

[2]  Yue Wu,et al.  Measurement of thermal conductivity of PbTe nanocrystal coated glass fibers by the 3ω method. , 2013, Nano letters.

[3]  H. Sevinçli,et al.  A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons , 2013, Scientific reports.

[4]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[5]  Wei Zhou,et al.  Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes , 2005 .

[6]  J. Blackburn,et al.  Polymer-free carbon nanotube thermoelectrics with improved charge carrier transport and power factor , 2016 .

[7]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[8]  Heat conduction of single-walled carbon nanotube isotope superlattice structures : A molecular dynamics study , 2006, cond-mat/0608525.

[9]  S. Cho,et al.  Enhanced thermoelectric performance of bar-coated SWCNT/P3HT thin films. , 2015, ACS applied materials & interfaces.

[10]  C. Lambert,et al.  Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons , 2015, Beilstein journal of nanotechnology.

[11]  Choongho Yu,et al.  N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites , 2012, PloS one.

[12]  Li Shi,et al.  Thermal and Structural Characterizations of Individual Single‐, Double‐, and Multi‐Walled Carbon Nanotubes , 2009 .

[13]  K. Srinivasu,et al.  Graphyne and Graphdiyne: Promising Materials for Nanoelectronics and Energy Storage Applications , 2012 .

[14]  Terry M. Tritt,et al.  Properties of Nanostructured One-Dimensional and Composite Thermoelectric Materials , 2006 .

[15]  Rachel A. Segalman,et al.  Organic thermoelectric materials for energy harvesting and temperature control , 2016, Nature Reviews Materials.

[16]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[17]  Tiejun Zhu,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature communications.

[18]  Hongwei Zhu,et al.  Carbon Nanotube Sponges , 2010, Advanced materials.

[19]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[20]  Solvent basicity promotes the hydride-mediated electron transfer doping of carbon nanotubes. , 2017, Chemical communications.

[21]  Lei Cao,et al.  Ultralow Lattice Thermal Conductivity of the Random Multilayer Structure with Lattice Imperfections , 2017, Scientific Reports.

[22]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[23]  L. Pereira,et al.  Thermal Conductivity of Graphene-hBN Superlattice Ribbons , 2018, Scientific Reports.

[24]  X. Ruan,et al.  Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. , 2014, Nano letters.

[25]  Molecular design and control of fullerene-based bi-thermoelectric materials. , 2016, Nature materials.

[26]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[27]  Yan Wang Multiscale simulations of thermal transport in graphene-based materials and across metal-semiconductor interfaces , 2016 .

[28]  X. Ruan,et al.  Edge effect on thermal transport in graphene nanoribbons: A phonon localization mechanism beyond edge roughness scattering , 2012 .

[29]  X. Ruan,et al.  First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering , 2016 .

[30]  H. Kataura,et al.  Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film , 2014, 1401.7469.

[31]  M. Koslowski,et al.  Effect of microstructural uncertainty on the yield stress of nanocrystalline nickel , 2013 .

[32]  T. Fujigaya,et al.  Development of air-stable n-type single-walled carbon nanotubes by doping with 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzo[d]imidazole and their thermoelectric properties , 2017 .

[33]  Z. Ren,et al.  Studies on mechanical properties of thermoelectric materials by nanoindentation , 2015 .

[34]  Jian-Sheng Wang,et al.  Minimum thermal conductance in graphene and boron nitride superlattice , 2011, 1108.5806.

[35]  Y. Ando,et al.  Physical properties of multiwalled carbon nanotubes , 1999 .

[36]  Lidong Chen,et al.  Room-temperature ductile inorganic semiconductor , 2018, Nature Materials.

[37]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[38]  A. Mukherjee,et al.  Thermoelectric properties of carbon nanotube/ceramic nanocomposites , 2006 .

[39]  Hui Zhao,et al.  Thermoelectric properties of hexagonal graphene quantum dots , 2012 .

[40]  D. Walton,et al.  Effect of magnon-phonon thermal relaxation on heat transport by magnons , 1977 .

[41]  Charge transfer induced polarity switching in carbon nanotube transistors. , 2005, Nano letters.

[42]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[43]  F Cleri,et al.  Turning carbon nanotubes from exceptional heat conductors into insulators. , 2009, Physical review letters.

[44]  Rong Xiang,et al.  Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications. , 2012, ACS applied materials & interfaces.

[45]  Asir Intisar Khan,et al.  Impact of vacancies on the thermal conductivity of graphene nanoribbons: A molecular dynamics simulation study , 2017 .

[46]  C. Uher Materials Aspect of Thermoelectricity , 2016 .

[47]  X. Ruan,et al.  Tunable thermal rectification in graphene nanoribbons through defect engineering: A molecular dynamics study , 2012 .

[48]  C. Reinke,et al.  Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature , 2015, Nature Communications.

[49]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[50]  W. Xu,et al.  Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently , 2014, Advanced materials.

[51]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[52]  G. J. Snyder,et al.  Improved mechanical properties of thermoelectric (Bi0.2Sb0.8)2Te3 by nanostructuring , 2016 .

[53]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[54]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[55]  H. Tada,et al.  Thermopower of benzenedithiol and C60 molecular junctions with Ni and Au electrodes. , 2014, Nano letters.

[56]  B. Hong,et al.  Length-dependent thermal conductivity in suspended single-layer graphene. , 2014, Nature communications.

[57]  T. Kawai,et al.  Air-tolerant Fabrication and Enhanced Thermoelectric Performance of n-Type Single-walled Carbon Nanotubes Encapsulating 1,1'-Bis(diphenylphosphino)ferrocene. , 2016, Chemistry, an Asian journal.

[58]  Jingkun Xu,et al.  Fabrication of a layered nanostructure PEDOT:PSS/SWCNTs composite and its thermoelectric performance , 2013 .

[59]  Chih-Wei Chang,et al.  Divergent and Ultrahigh Thermal Conductivity in Millimeter-Long Nanotubes. , 2017, Physical review letters.

[60]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[61]  S. Cho,et al.  Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films , 2015 .

[62]  K. Goodson,et al.  Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. , 2017, Nature materials.

[63]  J. Hsu,et al.  Stable n-type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers , 2016 .

[64]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[65]  Tianli Feng,et al.  Ultra-low thermal conductivity in graphene nanomesh , 2016 .

[66]  S. Olla,et al.  Momentum conserving model with anomalous thermal conductivity in low dimensional systems. , 2005, Physical review letters.

[67]  J. Si,et al.  Enhanced thermoelectric performance of SnSe doped with layered MoS2/graphene , 2017 .

[68]  L. Hope-weeks,et al.  Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites , 2012, Nanotechnology.

[69]  Juanxiu Xiao,et al.  Engineered Molecular Chain Ordering in Single-Walled Carbon Nanotubes/Polyaniline Composite Films for High-Performance Organic Thermoelectric Materials. , 2016, Chemistry, an Asian journal.

[70]  G. J. Snyder,et al.  Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics , 2017 .

[71]  Jing Sun,et al.  Flexible single-walled carbon nanotubes/polyaniline composite films and their enhanced thermoelectric properties. , 2011, Nanoscale.

[72]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[73]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[74]  Q. Hao Effective medium formulation for phonon transport analysis of nanograined polycrystals , 2012 .

[75]  Baoling Huang,et al.  Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride , 2008 .

[76]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[77]  R. Arita,et al.  "Pudding mold" band drives large thermopower in NaxCoO2 , 2007, 0705.3088.

[78]  Jeffrey L. Blackburn,et al.  Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties , 2016, Nature Energy.

[79]  Gengchiau Liang,et al.  Theoretical study on thermoelectric properties of kinked graphene nanoribbons , 2011 .

[80]  Hong Wang,et al.  Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits. , 2015, ACS applied materials & interfaces.

[81]  Jun-qing Li,et al.  Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites , 2013 .

[82]  M. Koslowski,et al.  Effect of texture and grain size on the residual stress of nanocrystalline thin films , 2017 .

[83]  Philip S. Casey,et al.  Research progress on polymer–inorganic thermoelectric nanocomposite materials , 2012 .

[84]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[85]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[86]  O. Narayan,et al.  Anomalous heat conduction in one-dimensional momentum-conserving systems. , 2002, Physical review letters.

[87]  Limin Wang,et al.  Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances , 2017 .

[88]  X. Su,et al.  In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile and novel wet chemical method , 2013 .

[89]  Pawel Keblinski,et al.  Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination , 2010 .

[90]  Choongho Yu,et al.  Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomaterials , 2016 .

[91]  R. Baughman,et al.  Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes , 2010, Nanotechnology.

[92]  Joseph P. Heremans,et al.  Resonant levels in bulk thermoelectric semiconductors , 2012 .

[93]  Gang Chen,et al.  $\textit{Ab initio}$ study of electron mean free paths and thermoelectric properties of lead telluride , 2017, 1706.09287.

[94]  Bambi Hu,et al.  Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  Wu-Xing Zhou,et al.  Enhancement of thermoelectric performance in β-graphyne nanoribbons by suppressing phononic thermal conductance , 2015 .

[96]  G. J. Snyder,et al.  Nanocomposites from Solution‐Synthesized PbTe‐BiSbTe Nanoheterostructure with Unity Figure of Merit at Low‐Medium Temperatures (500–600 K) , 2017, Advanced materials.

[97]  X. Ruan,et al.  The effects of diameter and chirality on the thermal transport in free-standing and supported carbon-nanotubes , 2012 .

[98]  Jiang Chang,et al.  Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains , 2012 .

[99]  M. Meyyappan,et al.  Synthesis and thermoelectric power of nitrogen-doped carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[100]  K. Hata,et al.  Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants , 2013, Scientific Reports.

[101]  Jeffrey L. Blackburn,et al.  Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films , 2017 .

[102]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[103]  H. Sevinçli,et al.  Control of thermal and electronic transport in defect-engineered graphene nanoribbons. , 2011, ACS nano.

[104]  M. Martín-González,et al.  Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor , 2013 .

[105]  H. Dai,et al.  Narrow graphene nanoribbons from carbon nanotubes , 2009, Nature.

[106]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[107]  Jingkun Xu,et al.  Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review , 2012 .

[108]  Choongho Yu,et al.  Thermoelectric behavior of segregated-network polymer nanocomposites. , 2008, Nano letters.

[109]  Thermoelectric properties of single-wall carbon nanotube films: Effects of diameter and wet environment , 2016 .

[110]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[111]  B. Cao,et al.  Networked nanoconstrictions: An effective route to tuning the thermal transport properties of graphene , 2016 .

[112]  P. Dollfus,et al.  Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons , 2011 .

[113]  Modulation of thermoelectric power of individual carbon nanotubes. , 2003, Physical review letters.

[114]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[115]  Richard Czerw,et al.  Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. , 2012, Nano letters.

[116]  Dong Hyun Lee,et al.  Holey silicon as an efficient thermoelectric material. , 2010, Nano letters.

[117]  Woochul Kim,et al.  Effect of the carbon nanotube type on the thermoelectric properties of CNT/Nafion nanocomposites , 2011 .

[118]  Lianjun Wang,et al.  Enhanced thermoelectric and mechanical properties of Na-doped polycrystalline SnSe thermoelectric materials via CNTs dispersion , 2018 .

[119]  Limin Wang,et al.  Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering , 2014 .

[120]  X. Ruan,et al.  Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study , 2010, 1008.1288.

[121]  F. S. Kim,et al.  Effects of one- and two-dimensional carbon hybridization of PEDOT:PSS on the power factor of polymer thermoelectric energy conversion devices , 2015 .

[122]  Irena Knezevic,et al.  Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering , 2011 .

[123]  H. Sevinçli,et al.  Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons , 2009, 0908.3207.

[124]  Wu-Xing Zhou,et al.  The thermal conductivity in hybridised graphene and boron nitride nanoribbons modulated with strain , 2016 .

[125]  G. J. Snyder,et al.  Characterization of Lorenz number with Seebeck coefficient measurement , 2015 .

[126]  N. P. Ong,et al.  Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 , 2003, Nature.

[127]  Yu Huang,et al.  Rational fabrication of graphene nanoribbons using a nanowire etch mask. , 2009, Nano letters.

[128]  Feng Qiu,et al.  Towards high-performance polymer-based thermoelectric materials , 2013 .

[129]  Eric A Shaner,et al.  Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. , 2011, Nano letters.

[130]  Xiaolin Wei,et al.  Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions , 2013 .

[131]  Z. Fthenakis,et al.  Computational study of the thermal conductivity of defective carbon nanostructures , 2012, 1208.6331.

[132]  Xinfeng Tang,et al.  Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes , 2012, Nanoscale Research Letters.

[133]  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[134]  Benhu Zhou,et al.  Enhanced thermoelectric properties of the AGNR-GYNR heterojunctions , 2017 .

[135]  Eklund,et al.  Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes , 2000, Physical review letters.

[136]  Vincent Meunier,et al.  Enhanced thermoelectric figure of merit in assembled graphene nanoribbons , 2012 .

[137]  X. Ruan,et al.  Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers , 2014 .

[138]  Wonho Jeong,et al.  Electrostatic control of thermoelectricity in molecular junctions. , 2014, Nature nanotechnology.

[139]  X. Ruan,et al.  Two-Dimensional Thermal Transport in Graphene: A Review of Numerical Modeling Studies , 2014 .

[140]  J. Fischer,et al.  Electrical and thermal properties of C60-filled single-wall carbon nanotubes , 2002 .

[141]  Francesc Viñes,et al.  Competition for graphene: graphynes with direction-dependent Dirac cones. , 2012, Physical review letters.

[142]  Slobodan Mitrovic,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[143]  Ryoji Funahashi,et al.  Oxide thermoelectrics: The challenges, progress, and outlook , 2011 .

[144]  Choongho Yu,et al.  Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes , 2012 .

[145]  Mahan,et al.  Minimum thermal conductivity of superlattices , 2000, Physical review letters.

[146]  D. Go,et al.  Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices , 2015 .

[147]  Xing Zhang,et al.  Significantly enhanced thermoelectric properties of ultralong double-walled carbon nanotube bundle , 2013 .

[148]  X. Ruan,et al.  Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit , 2016 .

[149]  M. Dresselhaus,et al.  Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes , 2006 .

[150]  D. Negi,et al.  High Thermoelectric Performance and Enhanced Mechanical Stability of p-type Ge1–xSbxTe , 2015 .

[151]  Guangming Chen,et al.  Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites , 2016 .

[152]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[153]  T. Kawai,et al.  Simple Salt‐Coordinated n‐Type Nanocarbon Materials Stable in Air , 2016 .

[154]  E. Leary,et al.  Engineering the thermopower of C60 molecular junctions. , 2013, Nano letters.

[155]  Yeonsu Jung,et al.  Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes. , 2017, ACS nano.

[156]  H. Rafii-Tabar,et al.  In-plane thermal conductivity of graphene nanomesh: A molecular dynamics study , 2016 .

[157]  N. Mott,et al.  Observation of Anderson Localization in an Electron Gas , 1969 .

[158]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[159]  Yan Wang,et al.  Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity , 2015 .

[160]  The effect of humidity on the adsorption of the hydrazine on single-wall carbon nanotubes: First-principles electronic structure calculations , 2011 .

[161]  J. Nakamura,et al.  Giant Seebeck coefficient of the graphene/h-BN superlattices , 2013 .

[162]  Alexander Sinitskii,et al.  Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100). , 2017, Nano letters.

[163]  J. Hsu,et al.  Completely Organic Multilayer Thin Film with Thermoelectric Power Factor Rivaling Inorganic Tellurides , 2015, Advanced materials.

[164]  A. Roy,et al.  Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces , 2012 .

[165]  S. Cho,et al.  Spray-printed CNT/P3HT organic thermoelectric films and power generators , 2015 .

[166]  Marisol Koslowski,et al.  Rate-limited plastic deformation in nanocrystalline Ni , 2015 .

[167]  J. Warner,et al.  Field-Effect Control of Graphene-Fullerene Thermoelectric Nanodevices. , 2017, Nano letters.

[168]  N. Singh,et al.  The effect of carbon nanotubes (CNT) on thermoelectric properties of lead telluride (PbTe) nanocubes , 2017 .

[169]  Renkun Chen,et al.  Thermal transport in amorphous materials: a review , 2016 .

[170]  Supriyo Datta,et al.  Lessons from Nanoelectronics: A New Perspective on Transport , 2012 .

[171]  G. Briggs,et al.  Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes , 2005, Nature materials.

[172]  Choongho Yu,et al.  Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. , 2011, ACS nano.

[173]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[174]  M. Buongiorno Nardelli,et al.  Thermoelectric properties of graphene nanoribbons, junctions and superlattices , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[175]  D. Schuster,et al.  High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. , 2001, Journal of the American Chemical Society.

[176]  Z. Akšamija,et al.  Anisotropy and Edge Roughness Scattering in the Lattice Thermal Conductivity of Graphene Nanoribbons , 2011 .

[177]  N. Mingo,et al.  Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit , 2010 .

[178]  Y. P. Chen,et al.  Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge , 2009 .

[179]  K. Hata,et al.  Dispersion of Synthetic MoS2 Flakes and Their Spontaneous Adsorption on Single-Walled Carbon Nanotubes. , 2015, ChemPlusChem.

[180]  Nan Zhang,et al.  High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture , 2017, Nature Communications.

[181]  Kazuo T. Nakamura,et al.  High-Temperature Thermoelectric Properties of NaxCoO2-δ Single Crystals , 2001 .

[182]  T. Fujigaya,et al.  Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property , 2015, Scientific Reports.

[183]  H. Jang,et al.  Fabrication of a graphene nanomesh using a platinum nano-network as a pattern mask. , 2014, Nanoscale.

[184]  Wenqing Zhang,et al.  Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. , 2010, ACS nano.

[185]  E. Shin,et al.  The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite , 2013 .

[186]  G. J. Snyder,et al.  Enhanced Strength Through Nanotwinning in the Thermoelectric Semiconductor InSb. , 2017, Physical review letters.

[187]  Guangming Chen,et al.  Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites , 2016 .

[188]  E. Leary,et al.  Engineering the Thermopower of C 60 Molecular Junctions , 2013 .

[189]  Bo Qiu,et al.  First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon , 2014, 1409.4862.

[190]  N. Zhang,et al.  Ultrahigh-Power-Factor Carbon Nanotubes and an Ingenious Strategy for Thermoelectric Performance Evaluation. , 2016, Small.

[191]  M. Kanatzidis,et al.  All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance , 2013 .

[192]  M. Correa‐Duarte,et al.  Layer-by-layer polymer coating of carbon nanotubes: tuning of electrical conductivity in random networks. , 2010, Journal of the American Chemical Society.

[193]  Choongho Yu,et al.  Fully Organic Nanocomposites with High Thermoelectric Power Factors by using a Dual‐Stabilizer Preparation , 2013 .

[194]  Seong Ihl Woo,et al.  Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. , 2012, Physical chemistry chemical physics : PCCP.

[195]  A. Hunter,et al.  The role of partial mediated slip during quasi-static deformation of 3D nanocrystalline metals , 2015 .

[196]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[197]  Changhong Liu,et al.  A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks , 2010, Advanced materials.

[198]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[199]  K. Cai,et al.  Preparation and thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites , 2014 .

[200]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[201]  Choongho Yu,et al.  Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). , 2010, ACS nano.

[202]  Jing Guo,et al.  A theoretical study on thermoelectric properties of graphene nanoribbons , 2009 .

[203]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[204]  T. Arie,et al.  Enhancement of graphene thermoelectric performance through defect engineering , 2017 .

[205]  Haiyan Yan,et al.  Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes , 2014, Journal of Materials Science.

[206]  Y. Maniwa,et al.  Improvement of thermoelectric performance of single-wall carbon nanotubes by heavy doping: Effect of one-dimensional band multiplicity , 2016 .

[207]  O. A. Castañeda-Uribe,et al.  Large thermoelectric figure of merit in graphene layered devices at low temperature , 2017, 1710.01152.

[208]  Choongho Yu,et al.  Increasing the thermoelectric power factor of polymer composites using a semiconducting stabilizer for carbon nanotubes , 2012 .

[209]  D. Maroudas,et al.  Thermal transport properties of graphene nanomeshes , 2014 .

[210]  Ryoji Funahashi,et al.  Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .

[211]  G. Ghibaudo,et al.  Effect of Intertube Junctions on the Thermoelectric Power of Monodispersed Single Walled Carbon Nanotube Networks , 2014 .

[212]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[213]  Claudia Felser,et al.  Engineering half-Heusler thermoelectric materials using Zintl chemistry , 2016 .

[214]  G. J. Snyder,et al.  Thermopower enhancement in Pb1−xMnxTe alloys and its effect on thermoelectric efficiency , 2012 .

[215]  Jeffrey L. Blackburn,et al.  Thermoelectric Materials: Carbon‐Nanotube‐Based Thermoelectric Materials and Devices (Adv. Mater. 11/2018) , 2018 .

[216]  Naoki Toshima,et al.  High thermoelectric performance of poly (2,5 -dimethoxyphenylenevinylene) and its derivatives , 2006 .

[217]  J. Coleman,et al.  Thermoelectric behavior of organic thin film nanocomposites , 2013 .

[218]  W. Tremel,et al.  Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol , 2017 .

[219]  Huy V. Nguyen,et al.  Enhanced thermoelectric figure of merit in vertical graphene junctions , 2014, 1408.6154.

[220]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[221]  C. Goupil Continuum Theory andModeling of Thermoelectric Elements: Goupil/Continuum Theory andModeling of Thermoelectric Elements , 2016 .

[222]  A. Majumdar,et al.  Thermoelectricity in fullerene-metal heterojunctions. , 2011, Nano letters.

[223]  Junyong Kang,et al.  Thermal conductivity of isotopically modified graphene. , 2011, Nature Materials.

[224]  Z. Shao,et al.  Gate-enhanced thermoelectric effects in all-carbon quantum devices , 2016 .

[225]  Alexander A. Balandin,et al.  Thermal Properties of Isotopically Engineered Graphene , 2011, 1112.5752.

[226]  X. Duan,et al.  Graphene nanomesh , 2010, Nature nanotechnology.

[227]  S. Cho,et al.  Improving the thermoelectric power factor of CNT/PEDOT:PSS nanocomposite films by ethylene glycol treatment , 2016 .

[228]  Steven W. Cranford,et al.  Mechanical properties of graphyne , 2011 .

[229]  K. Loh,et al.  First-principles study of the thermoelectric properties of strained graphene nanoribbons , 2013, 1308.4474.