Epigenetic Reprogramming in Cancer

The demonstration of induced pluripotency and direct lineage conversion has led to remarkable insights regarding the roles of transcription factors and chromatin regulators in mediating cell state transitions. Beyond its considerable implications for regenerative medicine, this body of work is highly relevant to multiple stages of oncogenesis, from the initial cellular transformation to the hierarchical organization of established malignancies. Here, we review conceptual parallels between the respective biological phenomena, highlighting important interrelationships among transcription factors, chromatin regulators, and preexisting epigenetic states. The shared mechanisms provide insights into oncogenic transformation, tumor heterogeneity, and cancer stem cell models.

[1]  A. Chadli THE CANCER CELL , 1924, La Presse medicale.

[2]  H. Weintraub,et al.  Expression of a single transfected cDNA converts fibroblasts to myoblasts , 1987, Cell.

[3]  P. Sperryn,et al.  Blood. , 1989, British journal of sports medicine.

[4]  AC Tose Cell , 1993, Cell.

[5]  Karl Mechtler,et al.  Loss of the Suv39h Histone Methyltransferases Impairs Mammalian Heterochromatin and Genome Stability , 2001, Cell.

[6]  L. Allen Stem cells. , 2003, The New England journal of medicine.

[7]  Y. Bergman,et al.  Oct-3/4 is a dose-dependent oncogenic fate determinant. , 2003, Cancer cell.

[8]  C. Caldas,et al.  p300/CBP and cancer , 2004, Oncogene.

[9]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[10]  D. Peeper,et al.  KLF4, p21 and context-dependent opposing forces in cancer , 2006, Nature Reviews Cancer.

[11]  Leonard I Zon,et al.  Cell stem cell. , 2007, Cell stem cell.

[12]  R. Stewart,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[13]  Eric S. Lander,et al.  Dissecting direct reprogramming through integrative genomic analysis , 2008, Nature.

[14]  A. Regev,et al.  SOX2 Is an Amplified Lineage Survival Oncogene in Lung and Esophageal Squamous Cell Carcinomas , 2009, Nature Genetics.

[15]  Luyang Sun,et al.  LSD1 Is a Subunit of the NuRD Complex and Targets the Metastasis Programs in Breast Cancer , 2009, Cell.

[16]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[17]  Howard Y. Chang,et al.  Epigenomics , 2009, Genomic Medicine.

[18]  Bin Tean Teh,et al.  Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer , 2009, Nature Genetics.

[19]  Tian-Li Wang,et al.  Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma , 2010, Science.

[20]  Joshua F. McMichael,et al.  DNMT3A mutations in acute myeloid leukemia. , 2010, The New England journal of medicine.

[21]  G. Daley,et al.  Lin28: A MicroRNA Regulator with a Macro Role , 2010, Cell.

[22]  A. Ruiz i Altaba,et al.  NANOG regulates glioma stem cells and is essential in vivo acting in a cross‐functional network with GLI1 and p53 , 2010, The EMBO journal.

[23]  Nicolò Riggi,et al.  EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. , 2010, Genes & development.

[24]  Ryan D. Morin,et al.  Somatic mutation of EZH2 (Y641) in Follicular and Diffuse Large B-cell Lymphomas of Germinal Center Origin , 2010, Nature Genetics.

[25]  A. Lakshmikuttyamma,et al.  Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition , 2010, Oncogene.

[26]  Danny Reinberg,et al.  Molecular Signals of Epigenetic States , 2010, Science.

[27]  Marcos J. Araúzo-Bravo,et al.  Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming , 2010, Cell.

[28]  Guy Sauvageau,et al.  Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. , 2010, Cell stem cell.

[29]  Richard A. Moore,et al.  ARID1A mutations in endometriosis-associated ovarian carcinomas. , 2010, The New England journal of medicine.

[30]  Krishanu Saha,et al.  Pluripotency and Cellular Reprogramming: Facts, Hypotheses, Unresolved Issues , 2010, Cell.

[31]  R. Copeland,et al.  Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas , 2010, Proceedings of the National Academy of Sciences.

[32]  I. Ng,et al.  CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. , 2011, Cell stem cell.

[33]  Jin He,et al.  KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. , 2011, Blood.

[34]  David A. Orlando,et al.  The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset , 2011, Nature.

[35]  L. Staudt,et al.  The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. , 2011, Blood.

[36]  A. Feinberg,et al.  Genome-scale epigenetic reprogramming during epithelial to mesenchymal transition , 2011, Nature Structural &Molecular Biology.

[37]  B. Garcia,et al.  NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. , 2011, Molecular cell.

[38]  Thomas Vierbuchen,et al.  Direct Lineage Conversions: Unnatural but useful? , 2011, Nature Biotechnology.

[39]  Peter A. Jones,et al.  A decade of exploring the cancer epigenome — biological and translational implications , 2011, Nature Reviews Cancer.

[40]  Kwok-Kin Wong,et al.  Lysine-specific Demethylase 2B (KDM2B)-let-7-Enhancer of Zester Homolog 2 (EZH2) Pathway Regulates Cell Cycle Progression and Senescence in Primary Cells* , 2011, The Journal of Biological Chemistry.

[41]  Zev A. Binder,et al.  The Genetic Landscape of the Childhood Cancer Medulloblastoma , 2011, Science.

[42]  J. Shen,et al.  NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation , 2011, Oncogene.

[43]  Stuart H. Orkin,et al.  Chromatin Connections to Pluripotency and Cellular Reprogramming , 2011, Cell.

[44]  B. Bernstein,et al.  Charting histone modifications and the functional organization of mammalian genomes , 2011, Nature Reviews Genetics.

[45]  Y. Shinkai,et al.  H3K9 methyltransferase G9a and the related molecule GLP. , 2011, Genes & development.

[46]  Zachary D. Smith,et al.  Reprogramming factor expression initiates widespread targeted chromatin remodeling. , 2011, Cell stem cell.

[47]  Jonathan M. Monk,et al.  Wdr5 Mediates Self-Renewal and Reprogramming via the Embryonic Stem Cell Core Transcriptional Network , 2011, Cell.

[48]  S. Armstrong,et al.  A role for DOT1L in MLL-rearranged leukemias. , 2011, Epigenomics.

[49]  D. Green,et al.  c-Myc Is a Universal Amplifier of Expressed Genes in Lymphocytes and Embryonic Stem Cells , 2012, Cell.

[50]  M. Dawson,et al.  Cancer Epigenetics: From Mechanism to Therapy , 2012, Cell.

[51]  Jian Xu,et al.  Designing an Enhancer Landscape , 2012, Cell.

[52]  B. Spencer‐Dene,et al.  Embryonic NANOG Activity Defines Colorectal Cancer Stem Cells and Modulates through AP1‐ and TCF‐dependent Mechanisms , 2012, Stem cells.

[53]  Peter Dirks,et al.  Cancer stem cells: an evolving concept , 2012, Nature Reviews Cancer.

[54]  Benjamin J. Raphael,et al.  The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer , 2012, Nature.

[55]  A. Ferrando,et al.  Genetic Inactivation of the PRC2 Complex in T-Cell Acute Lymphoblastic Leukemia , 2011, Nature Medicine.

[56]  Greg Donahue,et al.  Facilitators and Impediments of the Pluripotency Reprogramming Factors' Initial Engagement with the Genome , 2012, Cell.

[57]  Yi Zhang,et al.  Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming , 2012, Nature Cell Biology.

[58]  Elaine R. Mardis,et al.  Novel mutations target distinct subgroups of medulloblastoma , 2012, Nature.

[59]  Chi V Dang,et al.  MYC on the Path to Cancer , 2012, Cell.

[60]  Charles Y. Lin,et al.  Transcriptional Amplification in Tumor Cells with Elevated c-Myc , 2012, Cell.

[61]  Robert Gentleman,et al.  Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer , 2012, Nature Genetics.

[62]  S. Yamanaka Induced pluripotent stem cells: past, present, and future. , 2012, Cell stem cell.

[63]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[64]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[65]  Eric S. Lander,et al.  Chromatin modifying enzymes as modulators of reprogramming , 2012, Nature.

[66]  Crispin J. Miller,et al.  The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. , 2012, Cancer cell.

[67]  Andreas Hierholzer,et al.  Wnt/β-Catenin Signaling Regulates Telomerase in Stem Cells and Cancer Cells , 2012, Science.

[68]  Muneef Ayyash,et al.  The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming , 2012, Nature.

[69]  Kiran C. Bobba,et al.  The genetic basis of early T-cell precursor acute lymphoblastic leukaemia , 2012, Nature.

[70]  Bradley E. Bernstein,et al.  Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues , 2013, Cell.

[71]  Jieying Zhu,et al.  H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs , 2012, Nature Genetics.

[72]  Samantha A. Morris,et al.  A blueprint for engineering cell fate: current technologies to reprogram cell identity , 2013, Cell Research.

[73]  K. Hochedlinger,et al.  The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. , 2013, Cell stem cell.