A Review of Tunable Acoustic Metamaterials

Acoustic metamaterial science is an emerging field at the frontier of modern acoustics. It provides a prominent platform for acoustic wave control in subwavelength-sized metadevices or metasystems. However, most of the metamaterials can only work in a narrow frequency band once fabricated, which limits the practical application of acoustic metamaterials. This paper highlights some recent progress in tunable acoustic metamaterials based on various modulation techniques. Acoustic metamaterials have been designed to control the attenuation of acoustic waves, invisibility cloaking, and acoustic wavefront engineering, such as focusing via manipulating the acoustic impedance of metamaterials. The reviewed techniques are promising in extending the novel acoustics response into wider frequency bands, in that tunable acoustic metamaterials may be exploited for unusual applications compared to conventional acoustic devices.

[1]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[2]  B. Djafari-Rouhani,et al.  Tunable Fano resonances of Lamb modes in a pillared metasurface , 2017 .

[3]  Fangrong Hu,et al.  Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region , 2017 .

[4]  Soft acoustic metamaterials by design , 2014, 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics.

[5]  Sam-Hyeon Lee,et al.  Acoustic metamaterial with negative modulus , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  N. Fang,et al.  Numerical study of a near-zero-index acoustic metamaterial , 2012 .

[7]  Jihong Wen,et al.  Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials , 2012 .

[8]  Jianguo Tian,et al.  Multiband Asymmetric Transmission of Airborne Sound by Coded Metasurfaces , 2017 .

[9]  Andrea Alù,et al.  Extraordinary sound transmission through density-near-zero ultranarrow channels. , 2012, Physical review letters.

[10]  N. Fang,et al.  Focusing ultrasound with an acoustic metamaterial network. , 2009, Physical review letters.

[11]  C. Soukoulis,et al.  Low-loss and high-Q planar metamaterial with toroidal moment , 2013 .

[12]  Fuli Zhang,et al.  Electrically tunable Fano-type resonance of an asymmetric metal wire pair. , 2016, Optics express.

[13]  Weiqiang Ding,et al.  Fano resonant Ge2Sb2Te5 nanoparticles realize switchable lateral optical force. , 2016, Nanoscale.

[14]  Hervé Lissek,et al.  Electroacoustic absorbers: bridging the gap between shunt loudspeakers and active sound absorption. , 2011, The Journal of the Acoustical Society of America.

[15]  Sven M Ivansson,et al.  Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes. , 2008, The Journal of the Acoustical Society of America.

[16]  A tunable acoustic metamaterial with double-negativity driven by electromagnets , 2016, Scientific reports.

[17]  Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density. , 2016, The Journal of the Acoustical Society of America.

[18]  J. Hao,et al.  Nearly total absorption of light and heat generation by plasmonic metamaterials , 2011 .

[19]  Gyani Shankar Sharma,et al.  Acoustic performance of gratings of cylindrical voids in a soft elastic medium with a steel backing. , 2017, The Journal of the Acoustical Society of America.

[20]  Yongmin Liu,et al.  Origami‐Based Reconfigurable Metamaterials for Tunable Chirality , 2017, Advanced materials.

[21]  Oliver B. Wright,et al.  Origin of negative density and modulus in acoustic metamaterials , 2015, 1509.04094.

[22]  Bernard D. Casse,et al.  Super-resolution imaging using a three-dimensional metamaterials nanolens , 2010 .

[23]  Yuancheng Fan,et al.  Achieving a high- Q response in metamaterials by manipulating the toroidal excitations , 2018 .

[24]  D. Baranov,et al.  Novel Nanostructures and Materials for Strong Light–Matter Interactions , 2017 .

[25]  O. Bruno,et al.  On the magneto-elastic properties of elastomer–ferromagnet composites , 2001 .

[26]  Amr M. Baz,et al.  The structure of an active acoustic metamaterial with tunable effective density , 2009 .

[27]  Yan Pennec,et al.  Phononic Crystal Plate with Hollow Pillars Actively Controlled by Fluid Filling , 2016 .

[28]  Massimo Ruzzene,et al.  Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos , 2011 .

[29]  K. Bertoldi,et al.  Harnessing buckling to design tunable locally resonant acoustic metamaterials. , 2014, Physical review letters.

[30]  Tunable topological phononic crystals , 2015, 1512.00814.

[31]  D. Torrent,et al.  Double-negative acoustic metamaterials based on quasi-two-dimensional fluid-like shells , 2012 .

[32]  Yuancheng Fan,et al.  Tunable Terahertz Meta-Surface with Graphene Cut-Wires , 2015 .

[33]  Andrea Alù,et al.  Floquet topological insulators for sound , 2015, Nature Communications.

[34]  P. Sheng,et al.  Acoustic metamaterials: From local resonances to broad horizons , 2016, Science Advances.

[35]  Gennady Shvets,et al.  From scattering parameters to Snell's law: a subwavelength near-infrared negative-index metamaterial. , 2008, Physical review letters.

[36]  B. Djafari-Rouhani,et al.  Theory of acoustic band structure of periodic elastic composites. , 1994, Physical review. B, Condensed matter.

[37]  Paolo Ermanni,et al.  Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials , 2012 .

[38]  Kepeng Qiu,et al.  Mechanically stretchable and tunable metamaterial absorber , 2015 .

[39]  B. Bonello,et al.  Acoustic metamaterials with piezoelectric resonant structures , 2014 .

[40]  W. Akl,et al.  Stability analysis of active acoustic metamaterial with programmable bulk modulus , 2011 .

[41]  Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos , 2013 .

[42]  Weijia Wen,et al.  Effective Dynamic Mass Density of Composites , 2007 .

[43]  C. Soukoulis,et al.  Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances , 2018 .

[44]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[45]  K. Bishop Acoustic metamaterials: Living bandgaps. , 2017, Nature materials.

[46]  Yan Pennec,et al.  Pillar-type acoustic metasurface , 2017 .

[47]  Andrea Alù,et al.  Acoustic scattering cancellation via ultrathin pseudo-surface , 2011 .

[48]  Xiaobo Yin,et al.  A holey-structured metamaterial for acoustic deep-subwavelength imaging , 2011 .

[49]  Zeyong Wei,et al.  Tunable terahertz coherent perfect absorption in a monolayer graphene. , 2014, Optics letters.

[50]  Yifan Zhu,et al.  Ultrathin Acoustic Metasurface-Based Schroeder Diffuser , 2017 .

[51]  Hong-qiang Li,et al.  An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency , 2017, Scientific Reports.

[52]  Phononic crystal plate with hollow pillars connected by thin bars , 2017 .

[53]  Wanguo Zheng,et al.  Progress in octahedral spherical hohlraum study , 2016 .

[54]  P. Sheng,et al.  Membrane-type acoustic metamaterial with negative dynamic mass. , 2008, Physical review letters.

[55]  P. Sheng,et al.  Active control of membrane-type acoustic metamaterial by electric field , 2015 .

[56]  Jihong Wen,et al.  Ultra-thin smart acoustic metasurface for low-frequency sound insulation , 2016 .

[57]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[58]  R. Fleury,et al.  Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice , 2015, Nature Communications.

[59]  Shasha Peng,et al.  Parallel acoustic near-field microscope: A steel slab with a periodic array of slits. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  P. Sheng,et al.  Hybrid elastic solids. , 2011, Nature materials.

[61]  O Dazel,et al.  Using simple shape three-dimensional rigid inclusions to enhance porous layer absorption. , 2014, The Journal of the Acoustical Society of America.

[62]  Myoung Ki Jung,et al.  Highly tunable acoustic metamaterials based on a resonant tubular array , 2012 .

[63]  Chul Koo Kim,et al.  Reversed Doppler effect in double negative metamaterials , 2010 .

[64]  P. Sheng,et al.  Dark acoustic metamaterials as super absorbers for low-frequency sound , 2012, Nature Communications.

[65]  A. Baz,et al.  Experimental characterization of active acoustic metamaterial cell with controllable dynamic density , 2012 .

[66]  Steven Nutt,et al.  Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials , 2010 .

[67]  Chunguang Xia,et al.  Broadband acoustic cloak for ultrasound waves. , 2010, Physical review letters.

[68]  Qiang Cheng,et al.  Thermally tunable water-substrate broadband metamaterial absorbers , 2017 .

[69]  O. von Estorff,et al.  Perforated membrane-type acoustic metamaterials , 2017 .

[70]  Jensen Li,et al.  Tunable acoustic double negativity metamaterial , 2012, Scientific Reports.

[71]  M. Ruzzene,et al.  Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates , 2009 .

[72]  G. Theocharis,et al.  Non-Hermitian acoustic metamaterials: Role of exceptional points in sound absorption , 2016, 1611.03258.

[73]  Ping Sheng,et al.  Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime , 2010 .

[74]  C. Soukoulis,et al.  Temperature-Controlled Chameleonlike Cloak , 2017 .

[75]  B. Djafari-Rouhani,et al.  Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars , 2016 .

[76]  J. A. Marozas,et al.  Laser-direct-drive program: Promise, challenge, and path forward , 2017 .

[77]  J. Teng,et al.  Hybrid bilayer plasmonic metasurface efficiently manipulates visible light , 2016, Science Advances.

[78]  Yuancheng Fan,et al.  Broadband Terahertz Absorption in Graphene-Embedded Photonic Crystals , 2018, Plasmonics.

[79]  Zhengyou Liu,et al.  Coding Acoustic Metasurfaces , 2017, Advanced materials.

[80]  P. Sheng,et al.  Acoustic metasurface with hybrid resonances. , 2014, Nature materials.

[81]  Sam-Hyeon Lee,et al.  Composite acoustic medium with simultaneously negative density and modulus. , 2010, Physical review letters.

[82]  Tie Jun Cui,et al.  Information metamaterials and metasurfaces , 2017 .

[83]  Junjuan Zhao,et al.  Membrane acoustic metamaterial absorbers with magnetic negative stiffness. , 2017, The Journal of the Acoustical Society of America.

[84]  Yong Li,et al.  Acoustic metasurface-based perfect absorber with deep subwavelength thickness , 2016 .

[85]  B. Djafari-Rouhani,et al.  Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Ping Sheng,et al.  Low-frequency narrow-band acoustic filter with large orifice , 2013 .

[87]  Weihong Zhang,et al.  Electrically reconfigurable split ring resonator covered by nematic liquid crystal droplet. , 2016, Optics express.

[88]  Sven Ivansson,et al.  Sound absorption by viscoelastic coatings with periodically distributed cavities , 2006 .

[89]  Gyani Shankar Sharma,et al.  Sound transmission through a periodically voided soft elastic medium submerged in water , 2017 .

[90]  Sam-Hyeon Lee,et al.  Acoustic metamaterial with negative density , 2009 .

[91]  Yun Lai,et al.  Effective medium theory for elastic metamaterials in two dimensions , 2007 .

[92]  Huanyang Chen,et al.  Self-Focusing and the Talbot Effect in Conformal Transformation Optics. , 2017, Physical review letters.

[93]  Shigang Ai,et al.  Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields , 2014 .

[94]  John H. Page,et al.  Superabsorption of acoustic waves with bubble metascreens , 2015 .

[95]  Steven A. Cummer,et al.  Active acoustic metamaterials reconfigurable in real-time , 2015, 1505.00453.

[96]  Amr M. Baz,et al.  Analysis and experimental demonstration of an active acoustic metamaterial cell , 2012 .

[97]  A. Baz,et al.  Multicell Active Acoustic Metamaterial With Programmable Effective Densities , 2012 .

[98]  J. Groby,et al.  Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions. , 2013, The Journal of the Acoustical Society of America.

[99]  M. Ruzzene,et al.  An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures , 2017 .

[100]  Steven A. Cummer,et al.  Tunable active acoustic metamaterials , 2013 .

[101]  Jensen Li,et al.  Double-negative acoustic metamaterial. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  Dejie Yu,et al.  Temperature-controlled tunable acoustic metamaterial with active band gap and negative bulk modulus , 2016 .

[103]  Fuli Zhang,et al.  Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory , 2017 .

[104]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[105]  Xu Ni,et al.  Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. , 2011, Physical review letters.

[106]  A. Alú,et al.  Controlling sound with acoustic metamaterials , 2016 .

[107]  Xinhua Hu,et al.  Three-Dimensional Single-Port Labyrinthine Acoustic Metamaterial: Perfect Absorption with Large Bandwidth and Tunability , 2016 .

[108]  Junjie Li,et al.  Tunable mid-infrared coherent perfect absorption in a graphene meta-surface , 2015, Scientific Reports.

[109]  K. Bertoldi,et al.  Harnessing Deformation to Switch On and Off the Propagation of Sound , 2016, Advanced materials.

[110]  Jiangtao Huangfu,et al.  A Viewpoint on: Experimental Verification of Reversed Cherenkov Radiation in Left-Handed Metamaterial , 2009 .

[111]  Baowen Li,et al.  Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection , 2013, Scientific Reports.

[112]  Weijia Wen,et al.  Effective mass density of fluid-solid composites. , 2006, Physical review letters.

[113]  O. von Estorff,et al.  A membrane-type acoustic metamaterial with adjustable acoustic properties , 2016 .

[114]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[115]  Steven A. Cummer,et al.  Nonreciprocal active metamaterials , 2012 .

[116]  Steven A. Cummer,et al.  Design and measurements of a broadband two-dimensional acoustic lens , 2011 .

[117]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[118]  Shuibao Qi,et al.  Theory of metascreen-based acoustic passive phased array , 2016 .

[119]  Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating* , 2016 .

[120]  N. Fang,et al.  Bifunctional acoustic metamaterial lens designed with coordinate transformation , 2017 .

[121]  Yan Pennec,et al.  Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars , 2014 .

[122]  M. Murakami,et al.  Optimization of laser illumination configuration for directly driven inertial confinement fusion , 2017 .

[123]  Yong Li,et al.  Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate , 2017 .

[124]  Jong Jin Park,et al.  Acoustic superlens using membrane-based metamaterials , 2015 .

[125]  P. Sheng,et al.  Analytic model of phononic crystals with local resonances , 2005 .

[126]  J. J. Park,et al.  Acoustic metamaterial exhibiting four different sign combinations of density and modulus , 2011, 1102.1767.

[127]  G. Theocharis,et al.  Bifurcation-based acoustic switching and rectification. , 2011, Nature materials.

[128]  D. Lafarge,et al.  Multiple scattering of acoustic waves and porous absorbing media. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[129]  Michael P. Païdoussis,et al.  Parameter derivation for an acoustic cloak based on scattering theory and realization with tunable metamaterials , 2013 .

[130]  Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[131]  Mathias Fink,et al.  Design and characterization of bubble phononic crystals , 2009 .

[132]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[133]  D. Frantzeskakis,et al.  Bright and gap solitons in membrane-type acoustic metamaterials. , 2017, Physical review. E.

[134]  Nian‐Hai Shen,et al.  Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials. , 2018, Nanoscale.

[135]  Jun Lan,et al.  Nonlinear effects in acoustic metamaterial based on a cylindrical pipe with ordered Helmholtz resonators , 2017 .

[136]  Ming-Hui Lu,et al.  Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers , 2017, Scientific Reports.

[137]  A. Baz,et al.  Active Acoustic Metamaterial With Simultaneously Programmable Density and Bulk Modulus , 2013 .

[138]  Gengkai Hu,et al.  Experimental study on negative effective mass in a 1D mass–spring system , 2008 .

[139]  C. Soukoulis,et al.  Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime , 2016 .

[140]  A. Baz,et al.  Multi-cell Active Acoustic Metamaterial with Programmable Bulk Modulus , 2010 .

[141]  B. Djafari-Rouhani,et al.  Acoustic band structure of periodic elastic composites. , 1993, Physical review letters.

[142]  P A Deymier,et al.  Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. , 2001, Physical review letters.

[143]  Experimental demonstration of one-dimensional active plate-type acoustic metamaterial with adaptive programmable density , 2017 .

[144]  Mathias Fink,et al.  Shaping reverberating sound fields with an actively tunable metasurface , 2018, Proceedings of the National Academy of Sciences.

[145]  Graeme W Milton,et al.  On modifications of Newton's second law and linear continuum elastodynamics , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[146]  S. Cummer,et al.  Tunable Asymmetric Transmission via Lossy Acoustic Metasurfaces. , 2017, Physical review letters.

[147]  Andrea Alù,et al.  An invisible acoustic sensor based on parity-time symmetry , 2015, Nature Communications.

[148]  Yan Wang,et al.  Observation of the inverse Doppler effect in negative-index materials at optical frequencies , 2011 .

[149]  Andrea Alù,et al.  Subwavelength ultrasonic circulator based on spatiotemporal modulation , 2015 .

[150]  Steven A Cummer,et al.  Non-reciprocal and highly nonlinear active acoustic metamaterials , 2014, Nature Communications.