Estimating the indexability of multimedia descriptors for similarity searching

A study on properties of data sets representing public domain audio and visual content and their relation to their indexability is presented. Data analysis considers the pair-wise distance distributions and various techniques to estimate the true intrinsic dimensionality of the studied data. One own alternative to dimensionality estimation is also presented. These results are contrasted with the indexability results gathered using various indexing techniques.

[1]  Marta Rukoz,et al.  Qualitative comparison of audio and visual descriptors distributions , 2010, 2010 International Conference on Multimedia Computing and Information Technology (MCIT).

[2]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[3]  Bernard Chazelle,et al.  Computational geometry: a retrospective , 1994, STOC '94.

[4]  Robert P. W. Duin,et al.  An Evaluation of Intrinsic Dimensionality Estimators , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[6]  Timmerman M.E.,et al.  Principal Component Analysis (2nd Ed.). I. T. Jolliffe , 2003 .

[7]  Simon J. Godsill,et al.  Audio information retrieval: a bibliographical study , 2002 .

[8]  Gonzalo Navarro,et al.  A Probabilistic Spell for the Curse of Dimensionality , 2001, ALENEX.

[9]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[10]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[11]  B. S. Manjunath,et al.  Introduction to MPEG-7: Multimedia Content Description Interface , 2002 .

[12]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[13]  Pavel Zezula,et al.  M-tree: An Efficient Access Method for Similarity Search in Metric Spaces , 1997, VLDB.

[14]  Matthias Hein,et al.  Intrinsic dimensionality estimation of submanifolds in Rd , 2005, ICML.

[15]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[16]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[17]  Pat Langley,et al.  Models of Incremental Concept Formation , 1990, Artif. Intell..

[18]  Marieke E. Timmerman Principal Component Analysis , 2003 .

[19]  Christos Faloutsos,et al.  On the 'Dimensionality Curse' and the 'Self-Similarity Blessing' , 2001, IEEE Trans. Knowl. Data Eng..

[20]  Xavier Rodet,et al.  Toward Automatic Music Audio Summary Generation from Signal Analysis , 2002, ISMIR.

[21]  Jürgen Herre,et al.  Robust matching of audio signals using spectral flatness features , 2001, Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No.01TH8575).

[22]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.