A Skin-Stroke Display on the Eye-Ring Through Head-Mounted Displays

We present the Skin-Stroke Display, a system mounted on the lens inside the head-mounted display, which exerts subtle yet recognizable tactile feedback on the eye-ring using a motorized air jet. To inform our design of noticeable air-jet haptic feedback, we conducted a user study to identify absolute detection thresholds. Our results show that the tactile sensation had different sensitivity around the eyes, and we determined a standard intensity (8 mbar) to prevent turbulent airflow blowing into the eyes. In the second study, we asked participants to adjust the intensity around the eye for equal sensation based on standard intensity. Next, we investigated the recognition of point and stroke stimuli with or without inducing cognitive load on eight directions on the eye-ring. Our longStroke stimulus can achieve an accuracy of 82.6% without cognitive load and 80.6% with cognitive load simulated by the Stroop test. Finally, we demonstrate example applications using the skin-stroke display as the off-screen indicator, tactile I/O progress display, and tactile display.

[1]  Hiroyuki Kajimoto,et al.  A novel wearable device to present localized sensation of wind , 2009, Advances in Computer Entertainment Technology.

[2]  William R. Provancher,et al.  Fingerpad Skin Stretch Increases the Perception of Virtual Friction , 2009, IEEE Transactions on Haptics.

[3]  Geehyuk Lee,et al.  Designing a Non-contact Wearable Tactile Display Using Airflows , 2016, UIST.

[4]  Desney S. Tan,et al.  AirWave: non-contact haptic feedback using air vortex rings , 2013, UbiComp.

[5]  Patrick Baudisch,et al.  Skin Drag Displays: Dragging a Physical Tactor across the User's Skin Produces a Stronger Tactile Stimulus than Vibrotactile , 2015, CHI.

[6]  Ellen Yi-Luen Do,et al.  Ambiotherm: Enhancing Sense of Presence in Virtual Reality by Simulating Real-World Environmental Conditions , 2017, CHI.

[7]  Enrico Rukzio,et al.  Face/On: Multi-Modal Haptic Feedback for Head-Mounted Displays in Virtual Reality , 2019, IEEE Transactions on Visualization and Computer Graphics.

[8]  Wei Peng,et al.  ThermoVR: Exploring Integrated Thermal Haptic Feedback with Head Mounted Displays , 2017, CHI.

[9]  Jürgen Steimle,et al.  Springlets: Expressive, Flexible and Silent On-Skin Tactile Interfaces , 2019, CHI.

[10]  Yuki Kon,et al.  HangerOVER: Development of HMO-Embedded Haptic Display Using the Hanger Reflex and VR Application , 2018, 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[11]  Ellen Yi-Luen Do,et al.  Season Traveller: Multisensory Narration for Enhancing the Virtual Reality Experience , 2018, CHI.

[12]  Michael Rohs,et al.  HapticHead: A Spherical Vibrotactile Grid around the Head for 3D Guidance in Virtual and Augmented Reality , 2017, CHI.

[13]  Kouta Minamizawa,et al.  A Thermal Pattern Design for Providing Dynamic Thermal Feedback on the Face with Head Mounted Displays , 2017, Tangible and Embedded Interaction.

[14]  Kasper Hornbæk,et al.  ElectricItch: Skin Irritation as a Feedback Modality , 2018, UIST.

[15]  Allison M. Okamura,et al.  Sensory substitution using 3-degree-of-freedom tangential and normal skin deformation feedback , 2014, 2014 IEEE Haptics Symposium (HAPTICS).

[16]  Kouta Minamizawa,et al.  ThermalBracelet: Exploring Thermal Haptic Feedback Around the Wrist , 2019, CHI.

[17]  Jonathan Rossiter,et al.  A Wearable Skin-Stretching Tactile Interface for Human–Robot and Human–Human Communication , 2019, IEEE Robotics and Automation Letters.

[18]  Enrico Rukzio,et al.  VaiR: Simulating 3D Airflows in Virtual Reality , 2017, CHI.

[19]  Gerard Jounghyun Kim,et al.  Design and evaluation of a wind display for virtual reality , 2004, VRST '04.

[20]  Christian Holz,et al.  DualBlink: A Wearable Device to Continuously Detect, Track, and Actuate Blinking For Alleviating Dry Eyes and Computer Vision Syndrome , 2017, IMWUT.

[21]  S. Lederman,et al.  Human Hand Function , 2006 .

[22]  Anderson Maciel,et al.  Experiencing guidance in 3D spaces with a vibrotactile head-mounted display , 2017, 2017 IEEE Virtual Reality (VR).

[23]  Jisang Yoo,et al.  Change of Blink Rate in Viewing Virtual Reality with HMD , 2018, Symmetry.

[24]  J. Ridley Studies of Interference in Serial Verbal Reactions , 2001 .

[25]  Mark R. Cutkosky,et al.  Comparison of Skin Stretch and Vibrotactile Stimulation for Feedback of Proprioceptive Information , 2008, 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[26]  Hiroyuki Kajimoto,et al.  Haptopus: Transferring the Touch Sense of the Hand to the Face Using Suction Mechanism Embedded in HMD , 2018, SUI.

[27]  Ian Oakley,et al.  Whiskers: Exploring the Use of Ultrasonic Haptic Cues on the Face , 2018, CHI.

[28]  Liwei Chan,et al.  tactoRing: A Skin-Drag Discrete Display , 2017, CHI.

[29]  Felix Hülsmann,et al.  Simulating Wind and Warmth in Virtual Reality: Conception, Realization and Evaluation for a CAVE Environment , 2014, J. Virtual Real. Broadcast..

[30]  Roshan Lalintha Peiris,et al.  FacePush: Introducing Normal Force on Face with Head-Mounted Displays , 2018, UIST.

[31]  William R. Provancher,et al.  Back-to-back skin stretch feedback for communicating five degree-of-freedom direction cues , 2013, 2013 World Haptics Conference (WHC).

[32]  A. Landi Human Hand Function , 2007 .

[33]  Ali Israr,et al.  AIREAL: interactive tactile experiences in free air , 2013, ACM Trans. Graph..

[34]  J Dargahi,et al.  Human tactile perception as a standard for artificial tactile sensing—a review , 2004, The international journal of medical robotics + computer assisted surgery : MRCAS.

[35]  Anthony Tang,et al.  WindyWall: Exploring Creative Wind Simulations , 2019, TEI.

[36]  M. Leek Adaptive procedures in psychophysical research , 2001, Perception & psychophysics.

[37]  Michael Rohs,et al.  Increasing Presence in Virtual Reality with a Vibrotactile Grid Around the Head , 2017, INTERACT.

[38]  Dae Hwan Park,et al.  Anthropometry of Asian Eyelids by Age , 2008, Plastic and reconstructive surgery.

[39]  Wei Peng,et al.  Exploration of cuing methods for localization of spatial cues using thermal haptic feedback on the forehead , 2017, 2017 IEEE World Haptics Conference (WHC).

[40]  Da-Yuan Huang,et al.  Masque: Exploring Lateral Skin Stretch Feedback on the Face with Head-Mounted Displays , 2019, UIST.

[41]  Neil A. Dodgson,et al.  Variation and extrema of human interpupillary distance , 2004, IS&T/SPIE Electronic Imaging.

[42]  Pattie Maes,et al.  GyroVR: Simulating Inertia in Virtual Reality using Head Worn Flywheels , 2016, UIST.

[43]  Yasuaki Kakehi,et al.  Tearsense: a sensor system for illuminating and recording teardrops , 2014, AH.

[44]  Lynette A. Jones,et al.  Application of Psychophysical Techniques to Haptic Research , 2013, IEEE Transactions on Haptics.

[45]  William R. Provancher,et al.  Communication of direction through lateral skin stretch at the fingertip , 2009, World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[46]  Geehyuk Lee,et al.  Investigating the Information Transfer Efficiency of a 3x3 Watch-back Tactile Display , 2015, CHI.

[47]  Matteo Bianchi,et al.  Design and control of an air-jet lump display , 2012, 2012 IEEE Haptics Symposium (HAPTICS).

[48]  James D. Hollan,et al.  Tapping and rubbing: exploring new dimensions of tactile feedback with voice coil motors , 2008, UIST '08.

[49]  Pedro Lopes,et al.  Proprioceptive Interaction , 2015, CHI.

[50]  Hong Hua,et al.  Optimization of illumination schemes in a head-mounted display integrated with eye tracking capabilities , 2005, SPIE Optics + Photonics.

[51]  Ryoko Ueoka,et al.  Investigating Haptic Perception of and Physiological Responses to Air Vortex Rings on a User's Cheek , 2017, CHI.

[52]  Yuriko Suzuki,et al.  Air jet driven force feedback in virtual reality , 2005, IEEE Computer Graphics and Applications.