A.D. Alexandrov spaces with curvature bounded below

CONTENTS § 1. Introduction § 2. Basic concepts § 3. Globalization theorem § 4. Natural constructions § 5. Burst points § 6. Dimension § 7. The tangent cone and the space of directions. Conventions and notation § 8. Estimates of rough volume and the compactness theorem § 9. Theorem on almost isometry §10. Hausdorff measure §11. Functions that have directional derivatives, the method of successive approximations, level surfaces of almost regular maps §12. Level lines of almost regular maps §13. Subsequent results and open questionsReferences

[1]  E. Beckenbach Metric Differential Geometry , 1950 .

[2]  S. Croucher,et al.  Surveys , 1965, Understanding Communication Research Methods.

[3]  A. Aleksandrov,et al.  Two-dimensional manifolds of bounded curvature , 1967 .

[4]  H. Fédérer Geometric Measure Theory , 1969 .

[5]  J. Cheeger FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS. , 1970 .

[6]  Detlef Gromoll,et al.  On the Structure of Complete Manifolds of Nonnegative Curvature , 1972 .

[7]  L. Siebenmann,et al.  Deformation of homeomorphisms on stratified sets , 1972 .

[8]  H. Karcher,et al.  How to conjugateC1-close group actions , 1973 .

[9]  J. Cheeger,et al.  Comparison theorems in Riemannian geometry , 1975 .

[10]  Karsten Grove,et al.  A generalized sphere theorem , 1977 .

[11]  S. Buyalo Shortest paths on convex hypersurfaces of Riemannian spaces , 1979 .

[12]  I. Nikolaev Parallel translation and smoothness of the metric of spaces with bounded curvature , 1980 .

[13]  Michael Gromov,et al.  Curvature, diameter and betti numbers , 1981 .

[14]  Mikhael Gromov Structures métriques pour les variétés riemanniennes , 1981 .

[15]  I. Nikolaev,et al.  Smoothness of the metric of spaces with bilaterally bounded curvature in the sense of A. D. Aleksandrov , 1983 .

[16]  Parallel translation of vectors in spaces with curvature that is bilaterally bounded in the sense of A. D. Aleksandrov , 1983 .

[17]  Igor Nikolaev,et al.  Generalized Riemannian spaces , 1986 .

[18]  Spaces with bounded curvature and distance geometry , 1986 .

[19]  K. Grove Metric differential geometri , 1987 .

[20]  Stanley Peters Convergence of riemannian manifolds , 1987 .

[21]  Kenji Fukaya,et al.  A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters , 1988 .

[22]  R. Greene,et al.  Lipschitz convergence of Riemannian manifolds. , 1988 .

[23]  A new version of differentiable sphere theorem , 1989 .

[24]  P. Petersen,et al.  Geometric finiteness theorems via controlled topology , 1990 .

[25]  Takao Yamaguchi Collapsing and pinching under a lower curvature bound , 1991 .

[26]  P. Petersen,et al.  Manifolds near the boundary of existence , 1991 .

[27]  K. Grove,et al.  Erratum to Geometric finiteness theorems via controlled topology , 1991 .

[28]  Yu. G. Reshetnyak Two-Dimensional Manifolds of Bounded Curvature , 1993 .

[29]  J. Eschenburg Comparison Theorems in Riemannian Geometry , 1994 .