Self-assembled switches based on electroactuated multiwalled nanotubes

A fabrication process for nanoelectromechanical systems (NEMS) based on multiwalled carbon nanotubes (CNTs) suspended across metallic trenches is described. The process is versatile and allows the production of CNT-NEMS with singly or doubly clamped nanotubes at an adjustable height above a bottom electrode. When a voltage bias is applied between the nanotube and the bottom electrode, the devices act as very efficient electrical switches. Surface functionalization of the bottom electrode with a self-assembled monolayer is implemented to improve the switching reversibility. Moreover, it opens opportunities to use these CNT-NEMS as a vertical cross-bar junction for molecular electronics studies.