Relationships of Critical Temperatures to Calculated Molecular Properties

Quantitative structure−property relationships (QSPR) of critical temperatures with small numbers of physically significant molecular descriptors are developed using the CODESSA (comprehensive descriptors for structural and statistical analysis) technique. A highly significant one-parameter model correlates to the critical temperatures of 76 hydrocarbons at R2 = 0.953. A successful three-parameter model for 165 diverse compounds (R2 = 0.955) reveals fundamental structural influences on liquid-state properties.

[1]  S. Unger Molecular Connectivity in Structure–activity Analysis , 1987 .

[2]  J. Murray,et al.  Relationships of critical constants and boiling points to computed molecular surface properties , 1993 .

[3]  Alan R. Katritzky,et al.  COMPREHENSIVE DESCRIPTORS FOR STRUCTURAL AND STATISTICAL ANALYSIS. 1 : CORRELATIONS BETWEEN STRUCTURE AND PHYSICAL PROPERTIES OF SUBSTITUTED PYRIDINES , 1996 .

[4]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[5]  G. Jackson,et al.  The theoretical prediction of the cricital points of alkanes, perfluoroalkanes, and their mixtures using bonded hard-sphere (BHS) theory , 1996 .

[6]  A. Balaban Chemical applications of graph theory , 1976 .

[7]  T. Marks,et al.  Metal, bond energy, and ancillary ligand effects on actinide-carbon .sigma.-bond hydrogenolysis. A kinetic and mechanistic study , 1987 .

[8]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[9]  L. Kier,et al.  Molecular connectivity and structure-activity relationship of general anesthetics. , 1977, Molecular pharmacology.

[10]  M. Karelson,et al.  Correlation of Boiling Points with Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple Inorganics , 1996 .

[11]  Peter C. Jurs,et al.  Prediction of Normal Boiling Points of Hydrocarbons from Molecular Structure , 1995, J. Chem. Inf. Comput. Sci..

[12]  SOLUBILITY PROPERTIES IN POLYMERS AND BIOLOGICAL MEDIUMS. 3. PREDICTIONAL METHODS FOR CRITICAL TEMPERATURES, BOILING POINTS, AND SOLUBILITY PROPERTIES (RG VALUES) BASED ON MOLECULAR SIZE, POLARIZABILITY, AND DIPOLARITY , 1984 .

[13]  M. Randic Characterization of molecular branching , 1975 .

[14]  Michael H. Abraham,et al.  Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination , 1994 .

[15]  C. Cramer,et al.  General parameterized SCF model for free energies of solvation in aqueous solution , 1991 .

[16]  R. B. Hermann Theory of hydrophobic bonding. III. Method for the calculation of the hydrophobic interaction based on liquid state perturbation theory and a simple liquid model , 1975 .

[17]  Shah,et al.  Prediction of Critical Micelle Concentration Using a Quantitative Structure-Property Relationship Approach , 1997, Journal of colloid and interface science.

[18]  Alan R. Katritzky,et al.  Predicting Physical Properties from Molecular Structure , 1994 .

[19]  James Walker XXII.—The boiling points of homologous compounds. Part I. Simple and mixed ethers , 1894 .

[20]  I-Chien Wei,et al.  Molecular Modeling of the Physical Properties of the Alkanes. , 1988 .

[21]  R. Gani,et al.  New group contribution method for estimating properties of pure compounds , 1994 .

[22]  Roman Kaliszan,et al.  Quantum chemical parameters in correlation analysis of gas—liquid chromatographic retention indices of amines , 1985 .

[23]  D. Walsh,et al.  Kinetics and mechanism of hydrolysis of a silicate triester, tris(2-methoxyethoxy)phenylsilane , 1980 .

[24]  A. L. Horvath Molecular Design: Chemical Structure Generation from the Properties of Pure Organic Compounds , 1992 .

[25]  E. Pefferkorn,et al.  Selective liquid-liquid ion-exchange and structural properties of amphiphilic polyelectrolytes in organic media , 1975 .

[26]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[27]  Peter C. Jurs,et al.  Prediction of boiling points and critical temperatures of industrially important organic compounds from molecular structure , 1994, J. Chem. Inf. Comput. Sci..

[28]  S. Grigoras A structural approach to calculate physical properties of pure organic substances: The critical temperature, critical volume and related properties , 1990 .

[29]  Robert B. Hermann,et al.  Theory of hydrophobic bonding. II. Correlation of hydrocarbon solubility in water with solvent cavity surface area , 1972 .

[30]  P. Seybold,et al.  Molecular Shape as a Critical Factor in Structure-Property-Activity Studies , 1993 .

[31]  Alan R. Katritzky,et al.  A QSPR Study of the Solubility of Gases and Vapors in Water , 1996, J. Chem. Inf. Comput. Sci..

[32]  Alan R. Katritzky,et al.  Prediction of Polymer Glass Transition Temperatures Using a General Quantitative Structure-Property Relationship Treatment , 1996, J. Chem. Inf. Comput. Sci..

[33]  Ivan V. Stankevich,et al.  Topological Indices in Organic Chemistry , 1988 .

[34]  T. E. Daubert,et al.  Physical and thermodynamic properties of pure chemicals : data compilation , 1989 .

[35]  Alan R. Katritzky,et al.  QSPR Treatment of the Unified Nonspecific Solvent Polarity Scale , 1997, J. Chem. Inf. Comput. Sci..

[36]  Alan R. Katritzky,et al.  Prediction of Gas Chromatographic Retention Times and Response Factors Using a General Quantitative Structure-Property Relationship Treatment , 1994 .

[37]  Lowell H. Hall,et al.  Boiling Point and Critical Temperature of a Heterogeneous Data Set: QSAR with Atom Type Electrotopological State Indices Using Artificial Neural Networks. , 1997 .

[38]  P. Jurs,et al.  Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies , 1990 .

[39]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .