Sharp estimates for solutions of multi‐bubbles in compact Riemann surfaces

In this paper, we consider a sequence of multibubble solutions uk of the equation 0.1 $$\Delta_0 u_k + \rho_k \left( {{h e^{u_k}}\over{\int_M h e^{u_k} \,d\mu}}-1\right) = 0 \quad \hbox{in} \ M\,,$$ where h is a C2,β positive function in a compact Riemann surface M, and ρk is a constant satisfying limk→+∞ ρk = 8mπ for some positive integer m ≥ 1. We prove among other things that $$\rho_k - 8m\pi ={{2}\over{m}} \sum_{j=1}^m h^{-1} (p_{k,j}) (\Delta_0 \log h (p_{k,j})$$$$+8m\pi -2K (p_{k,j})) \lambda_{k,j} e^{-\lambda_{k,j}} +O(e^{-\lambda_{k,j}})\,,$$ where pk,j are centers of the bubbles of uk and λk,j are the local maxima of uk after adding a constant. This yields a uniform bound of solutions as ρk converges to 8mπ from below provided that $$\Delta_0 \log h (p_{k,j}) + 8m\pi -2K (p_{k,j}) > 0$$. It generalizes a previous result, due to Ding, Jost, Li, and Wang [18] and Nolasco and Tarantello [31], hich says that any sequence of minimizers uk is uniformly bounded if ρk > 8π and h satisfies $$\Delta_0 \log h (p) + 8 \pi -2K (p) > 0$$ for any maximum point p of the sum of 2 log h and the regular part of the Green function, where K is the Gaussian curvature of M. The analytic work of this paper is the first step toward computing the topological degree of ( 0.1 ), which was initiated by Li [24]. © 2002 Wiley Periodicals, Inc.

[1]  Chiun-Chuan Chen,et al.  Topological degree for a mean field equation on Riemann surfaces , 2003 .

[2]  Changshou Lin,et al.  On the symmetry of blowup solutions to a mean field equation , 2001 .

[3]  G. Tarantello,et al.  Vortex Condensates¶for the SU(3) Chern–Simons Theory , 2000 .

[4]  Changshou Lin Topological degree for mean field equations on S2 , 2000 .

[5]  Kuo‐shung Cheng,et al.  Conformal metrics with prescribed nonpositive Gaussian curvature on ${\mathbb R}^2$ , 2000 .

[6]  G. Tarantello,et al.  Vortices in the Maxwell-Chern-Simons Theory , 2000 .

[7]  Changshou Lin Uniqueness of Solutions to the Mean Field Equations for the Spherical Onsager Vortex , 2000 .

[8]  Changshou Lin Uniqueness of conformal metrics with prescribed total curvature in $R^2$ , 2000 .

[9]  Kuo‐shung Cheng,et al.  Multiple solutions of conformal metrics with negative total curvature , 2000, Advances in Differential Equations.

[10]  G. Tarantello,et al.  Double vortex condensates in the Chern-Simons-Higgs theory , 1999 .

[11]  Yanyan Li Harnack Type Inequality: the Method of Moving Planes , 1999 .

[12]  J. Jost,et al.  Multiplicity results for the two-vortex Chern-Simons Higgs model on the two-sphere , 1999 .

[13]  G. Tarantello,et al.  On a Sharp Sobolev‐Type Inequality on Two-Dimensional Compact Manifolds , 1998 .

[14]  Chiun-Chuan Chen,et al.  A sharp $\mathrm{sup} + \mathrm{inf}$ inequality for a nonlinear elliptic equation in $\mathbb{R}^2$ , 1998 .

[15]  G. Tarantello,et al.  On a periodic boundary value problem with exponential nonlinearities , 1998 .

[16]  J. Jost,et al.  Existence results for mean field equations , 1997, dg-ga/9710023.

[17]  I. Shafrir,et al.  On the Solutions of Liouville Systems , 1997 .

[18]  J. Jost,et al.  The differential equation $\Delta u = 8\pi - 8\pi h\exp {u}$ on a compact Riemann surface , 1997, dg-ga/9710005.

[19]  J. Jost,et al.  An analysis of the two-vortex case in the Chern-Simons Higgs model , 1997, dg-ga/9710006.

[20]  G. Tarantello Multiple condensate solutions for the Chern–Simons–Higgs theory , 1996 .

[21]  M. Kiessling,et al.  Conformally invariant systems of nonlinear PDE of Liouville type , 1995 .

[22]  L. Caffarelli,et al.  Vortex condensation in the Chern-Simons Higgs model: An existence theorem , 1995 .

[23]  J. Spruck,et al.  TOPOLOGICAL SOLUTIONS IN THE SELF-DUAL CHERN-SIMONS THEORY - EXISTENCE AND APPROXIMATION , 1995 .

[24]  M. Kiessling,et al.  Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry , 1994 .

[25]  I. Shafrir,et al.  A sup + inf Inequality for Some Nonlinear Elliptic Equations Involving Exponential Nonlinearities , 1993 .

[26]  S. Chang,et al.  The scalar curvature equation on 2- and 3-spheres , 1993 .

[27]  M. Kiessling Statistical mechanics of classical particles with logarithmic interactions , 1993 .

[28]  Takashi Suzuki Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity , 1992 .

[29]  Emanuele Caglioti,et al.  A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .

[30]  Wenxiong Chen,et al.  Classification of solutions of some nonlinear elliptic equations , 1991 .

[31]  Haim Brezis,et al.  Uniform estimates and blow–up behavior for solutions of −δ(u)=v(x)eu in two dimensions , 1991 .

[32]  Takashi Suzuki,et al.  Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities , 1990 .

[33]  S. Chang,et al.  Prescribing Gaussian curvature on S2 , 1987 .

[34]  F. W. Warner,et al.  Curvature Functions for Compact 2-Manifolds , 1974 .

[35]  J. Moser On a Nonlinear Problem in Differential Geometry , 1973 .