Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch.

Naturally occurring L-glutamine riboswitches occur in cyanobacteria and marine metagenomes, where they reside upstream of genes involved in nitrogen metabolism. By combining X-ray, NMR, and MD, we characterized an L-glutamine-dependent conformational transition in the Synechococcus elongatus glutamine riboswitch from tuning fork to L-shaped alignment of stem segments. This transition generates an open ligand-binding pocket with L-glutamine selectivity enforced by Mg(2+)-mediated intermolecular interactions. The transition also stabilizes the P1 helix through a long-range "linchpin" Watson-Crick G-C pair-capping interaction, while melting a short helix below P1 potentially capable of modulating downstream readout. NMR data establish that the ligand-free glutamine riboswitch in Mg(2+) solution exists in a slow equilibrium between flexible tuning fork and a minor conformation, similar, but not identical, to the L-shaped bound conformation. We propose that an open ligand-binding pocket combined with a high conformational penalty for forming the ligand-bound state provide mechanisms for reducing binding affinity while retaining high selectivity.

[1]  A. Serganov,et al.  Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch , 2011, Proceedings of the National Academy of Sciences.

[2]  A. Serganov,et al.  Metabolite recognition principles and molecular mechanisms underlying riboswitch function. , 2012, Annual review of biophysics.

[3]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[4]  A. Serganov,et al.  Structural insights into amino acid binding and gene control by a lysine riboswitch , 2008, Nature.

[5]  R. Montange,et al.  Free state conformational sampling of the SAM-I riboswitch aptamer domain. , 2010, Structure.

[6]  J H Prestegard,et al.  Order matrix analysis of residual dipolar couplings using singular value decomposition. , 1999, Journal of magnetic resonance.

[7]  J. Mongan,et al.  Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. , 2004, The Journal of chemical physics.

[8]  J. Wedekind,et al.  Comparison of a PreQ1 Riboswitch Aptamer in Metabolite-bound and Free States with Implications for Gene Regulation* , 2011, The Journal of Biological Chemistry.

[9]  H. Al‐Hashimi,et al.  Topology Links RNA Secondary Structure with Global Conformation, Dynamics, and Adaptation , 2010, Science.

[10]  Hashim M. Al-Hashimi,et al.  Functional complexity and regulation through RNA dynamics , 2012, Nature.

[11]  J. Rabinowitz,et al.  Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli , 2009, Nature chemical biology.

[12]  Margaret S. Ebert,et al.  An mRNA structure in bacteria that controls gene expression by binding lysine. , 2003, Genes & development.

[13]  J. Leigh,et al.  Nitrogen regulation in bacteria and archaea. , 2007, Annual review of microbiology.

[14]  R. Breaker,et al.  Bacterial aptamers that selectively bind glutamine , 2011, RNA biology.

[15]  A. Ferré-D’Amaré,et al.  Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase , 2009, Nature Structural &Molecular Biology.

[16]  R. Breaker,et al.  Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes , 2010, Genome Biology.

[17]  A. Ferré-D’Amaré,et al.  Global analysis of riboswitches by small-angle X-ray scattering and calorimetry. , 2014, Biochimica et biophysica acta.

[18]  T. Henkin,et al.  The L box regulon: Lysine sensing by leader RNAs of bacterial lysine biosynthesis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Batey,et al.  Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element* , 2008, Journal of Biological Chemistry.

[20]  R. Montange,et al.  Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.

[21]  Hashim M. Al-Hashimi,et al.  Topological constraints are major determinants of tRNA tertiary structure and dynamics and provide basis for tertiary folding cooperativity , 2014, Nucleic acids research.

[22]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[23]  P. Auffinger Ions in Molecular Dynamics Simulations of RNA Systems , 2012 .

[24]  A. Serganov,et al.  Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. , 2010, Molecular cell.

[25]  D. Lilley,et al.  Folding of the adenine riboswitch. , 2006, Chemistry & biology.

[26]  C. Oubridge,et al.  Crystallisation of RNA-protein complexes. II. The application of protein engineering for crystallisation of the U1A protein-RNA complex. , 1995, Journal of molecular biology.

[27]  Yong Xiong,et al.  Structural basis of cooperative ligand binding by the glycine riboswitch. , 2011, Chemistry & biology.

[28]  A. Serganov,et al.  Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. , 2004, Chemistry & biology.

[29]  C. Brooks,et al.  3D maps of RNA interhelical junctions , 2011, Nature Protocols.

[30]  T. Steitz,et al.  Metals, Motifs, and Recognition in the Crystal Structure of a 5S rRNA Domain , 1997, Cell.

[31]  Kathryn D. Smith,et al.  Structural basis of ligand binding by a c-di-GMP riboswitch , 2009, Nature Structural &Molecular Biology.

[32]  A. Bax,et al.  Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. , 1997, Science.

[33]  Jeetender Chugh,et al.  Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy , 2011, Nature Methods.

[34]  R. Batey,et al.  The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. , 2011, Structure.

[35]  Zasha Weinberg,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004, Science.

[36]  T. Kwaku Dayie,et al.  Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy , 2011, Nucleic acids research.

[37]  R. Batey,et al.  Ligand-dependent folding of the three-way junction in the purine riboswitch. , 2008, RNA.

[38]  J. Kieft,et al.  The structural basis of tRNA mimicry and conformational plasticity by a viral RNA , 2014, Nature.

[39]  R. Breaker Prospects for riboswitch discovery and analysis. , 2011, Molecular cell.

[40]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[41]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[42]  A. Ferré-D’Amaré,et al.  Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch , 2009, Nature Structural &Molecular Biology.

[43]  A. Serganov,et al.  A Decade of Riboswitches , 2013, Cell.

[44]  H. Schwalbe,et al.  Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution , 2007, Proceedings of the National Academy of Sciences.

[45]  J H Prestegard,et al.  Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Henkin,et al.  The T box mechanism: tRNA as a regulatory molecule , 2010, FEBS letters.

[47]  An RNA tertiary switch by modifying how helices are tethered , 2014, Genome Biology.