Impact of ash layer retention on heat transfer in piles of vegetation and structure firebrands

[1]  B. Lattimer,et al.  Evaluation of models and important parameters for firebrand burning , 2021, Combustion and Flame.

[2]  B. Lattimer,et al.  Statistical Assessment of Parameters Affecting Firebrand Pile Heat Transfer to Surfaces , 2021, Frontiers in Mechanical Engineering.

[3]  B. Lattimer,et al.  Measuring Heat Transfer From Firebrands to Surfaces , 2020, ASME 2020 Heat Transfer Summer Conference.

[4]  Rui Yang,et al.  Effect of firebrand size and geometry on heating from a smoldering pile under wind , 2020 .

[5]  B. Lattimer,et al.  Localized heat transfer from firebrands to surfaces , 2020, Fire Safety Journal.

[6]  Samuel L. Manzello,et al.  Role of Firebrand Combustion in Large Outdoor Fire Spread. , 2020, Progress in energy and combustion science.

[7]  M. Gollner,et al.  Firebrand Generation From Thermally-Degraded Cylindrical Wooden Dowels , 2019, Front. Mech. Eng..

[8]  Raquel S. P. Hakes,et al.  Thermal characterization of firebrand piles , 2019, Fire Safety Journal.

[9]  O. Ezekoye,et al.  Experimental and Analytical Characterization of Firebrand Ignition of Home Insulation Materials , 2019, Fire Technology.

[10]  Samuel L. Manzello,et al.  Characteristics of Firebrands Collected from Actual Urban Fires , 2018, Fire technology.

[11]  Albert Simeoni,et al.  Experimental Procedures Characterising Firebrand Generation in Wildland Fires , 2016 .

[12]  P. T. Summers,et al.  A Technique for Coupled Thermomechanical Response Measurement Using Infrared Thermography and Digital Image Correlation (TDIC) , 2016 .

[13]  B. Lattimer,et al.  Full-field surface heat flux measurement using non-intrusive infrared thermography , 2015 .

[14]  Saman Rashidi,et al.  Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring , 2013 .

[15]  Samuel L. Manzello,et al.  Firebrand Generation Data Obtained from a Full Scale Structure Burn | NIST , 2011 .

[16]  William Mell,et al.  A Case Study of a Community Affected by the Witch and Guejito Wildland Fires , 2011 .

[17]  M. Pinar Mengüç,et al.  Radiative transfer configuration factor catalog: a listing of relations for common geometries , 2011 .

[18]  Samuel L. Manzello,et al.  Numerical simulation and experiments of burning douglas fir trees , 2009 .

[19]  Samuel L. Manzello,et al.  Experimental investigation of firebrands: Generation and ignition of fuel beds , 2008 .

[20]  Samuel L. Manzello,et al.  Firebrand generation from burning vegetation , 2007 .

[21]  Samuel L. Manzello,et al.  Firebrand production from burning vegetation , 2006 .

[22]  Boming Yu,et al.  A fractal permeability model for bi-dispersed porous media , 2002 .

[23]  Jussi Timonen,et al.  Permeability and effective porosity of porous media , 1997 .

[24]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[25]  Theodore H. Bauer,et al.  A general analytical approach toward the thermal conductivity of porous media , 1993 .

[26]  O. A. Ezekoye,et al.  Thermo-mechanical modeling of firebrand breakage on a fractal tree , 2013 .

[27]  Samuel L. Manzello,et al.  The size and mass distribution of firebrands collected from ignited building components exposed to wind , 2013 .

[28]  Yoshihiko Hayashi,et al.  Mass and size distribution of firebrands generated from burning Korean pine (Pinus koraiensis) trees , 2009 .

[29]  M. Abdullahi Characteristics of Wood ASH / OPC Concrete , 2006 .

[30]  Yoshihiko Hayashi,et al.  Real-Scale Fire Wind Tunnel Experiment on Generation of Firebrands from a House on Fire , 2004 .

[31]  A. Campbell,et al.  Physical and chemical characteristics of wood ash , 1991 .