Rigorous Time/Space Trade-offs for Inverting Functions

We provide rigorous time/space trade-offs for inverting any function. Given a function f, we give a time/space trade-off of T S2 = N3 q(f), where q(f) is the probability that two random elements (taken with replacement) are mapped to the same image under f. We also give a more general trade-off, T S3 = N3, that can invert any function at any point.

[1]  Amos Fiat,et al.  Planning and learning in permutation groups , 1989, 30th Annual Symposium on Foundations of Computer Science.

[2]  Justin M. Reyneri,et al.  Drainage and the DES , 1982, CRYPTO.

[3]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[4]  Oded Goldreich,et al.  The bit extraction problem or t-resilient functions , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[5]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[6]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[7]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[8]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[9]  Martin E. Hellman,et al.  A cryptanalytic time-memory trade-off , 1980, IEEE Trans. Inf. Theory.

[10]  Alan Siegel,et al.  On universal classes of fast high performance hash functions, their time-space tradeoff, and their applications , 1989, 30th Annual Symposium on Foundations of Computer Science.

[11]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[12]  Michael Luby A Simple Parallel Algorithm for the Maximal Independent Set Problem , 1986, SIAM J. Comput..

[13]  Martin E. Hellman,et al.  Time-memory-processor trade-offs , 1988, IEEE Trans. Inf. Theory.

[14]  Oded Goldreich,et al.  On the power of two-point based sampling , 1989, J. Complex..

[15]  Andrew Chi-Chih Yao,et al.  Coherent Functions and Program ( extended abstract ) Checkers , .

[16]  Friedhelm Meyer auf der Heide,et al.  Dynamic Perfect Hashing: Upper and Lower Bounds , 1994, SIAM J. Comput..

[17]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[18]  Alfred V. Aho,et al.  Storing a dynamic sparse table , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).