Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

[1]  A. Doucet,et al.  Smoothing algorithms for state–space models , 2010 .

[2]  Karl J. Friston,et al.  DEM: A variational treatment of dynamic systems , 2008, NeuroImage.

[3]  Olli Yli-Harja,et al.  Stochastic Differential Equation Model for Cerebellar Granule Cell Excitability , 2008, PLoS Comput. Biol..

[4]  Didier Sornette,et al.  Properties of a simple bilinear stochastic model: Estimation and predictability , 2007, physics/0703217.

[5]  Claire Lacour,et al.  Nonparametric estimation of the stationary density and the transition density of a Markov chain , 2006, math/0611645.

[6]  Escape from a potential well, stochastic resonance and zero frequency component of the noise , 2007 .

[7]  A. Budhiraja,et al.  A survey of numerical methods for nonlinear filtering problems , 2007 .

[8]  L. M. Berliner,et al.  A Bayesian tutorial for data assimilation , 2007 .

[9]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses: The role of intrinsic connections , 2007, NeuroImage.

[10]  Dan Cornford,et al.  Gaussian Process Approximations of Stochastic Differential Equations , 2007, Gaussian Processes in Practice.

[11]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[12]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[13]  Antonio Napolitano,et al.  Cyclostationarity: Half a century of research , 2006, Signal Process..

[14]  Tohru Ozaki,et al.  An Approximate Innovation Method For The Estimation Of Diffusion Processes From Discrete Data , 2006 .

[15]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[16]  A. Turbiner Anharmonic Oscillator and Double-Well Potential: Approximating Eigenfunctions , 2005, math-ph/0506033.

[17]  G. Rees Statistical Parametric Mapping , 2004, Practical Neurology.

[18]  Bo Wang,et al.  Lack of Consistency of Mean Field and Variational Bayes Approximations for State Space Models , 2004, Neural Processing Letters.

[19]  Leonard A. Smith,et al.  Indistinguishable states II. The imperfect model scenario , 2004 .

[20]  Bo Wang,et al.  Convergence and Asymptotic Normality of Variational Bayesian Approximations for Expon , 2004, UAI.

[21]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  John Ian Ferrell,et al.  Detection of multi-stability , 2004 .

[23]  R. Meyer,et al.  Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter , 2003 .

[24]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[25]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[26]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[27]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[28]  Juha Karhunen,et al.  An Unsupervised Ensemble Learning Method for Nonlinear Dynamic State-Space Models , 2002, Neural Computation.

[29]  Eric A. Wan,et al.  Dual Extended Kalman Filter Methods , 2002 .

[30]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[31]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[32]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[33]  M. Opper,et al.  Information Geometry of Mean Field Approximation , 2001 .

[34]  Terrence J. Sejnowski,et al.  Variational Learning for Switching State-Space Models , 2001 .

[35]  Zoubin Ghahramani,et al.  The variational Kalman smoother , 2001 .

[36]  Michael I. Jordan,et al.  Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..

[37]  G. Eyink A Variational Formulation of Optimal Nonlinear Estimation , 2000, physics/0011049.

[38]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[39]  J. Yedidia An Idiosyncratic Journey Beyond Mean Field Theory , 2000 .

[40]  W. Ames Mathematics in Science and Engineering , 1999 .

[41]  D. Crisan,et al.  A particle approximation of the solution of the Kushner–Stratonovitch equation , 1999 .

[42]  Toshiyuki Tanaka,et al.  A Theory of Mean Field Approximation , 1998, NIPS.

[43]  Chris Snyder,et al.  The Fronts and Atlantic Storm-Track Experiment (FASTEX) : Scientific objectives and experimental design , 1997 .

[44]  A. Rukhin Bayes and Empirical Bayes Methods for Data Analysis , 1997 .

[45]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[46]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[47]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[48]  Non‐stationarity in garch models: A bayesian analysis , 1993 .

[49]  Geoffrey E. Hinton,et al.  Keeping the neural networks simple by minimizing the description length of the weights , 1993, COLT '93.

[50]  Christian P. Robert,et al.  L'analyse statistique bayésienne , 1993 .

[51]  É. Pardoux,et al.  Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .

[52]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[53]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[54]  F B Hanson,et al.  Mean and quasideterministic equivalence for linear stochastic dynamics. , 1989, Mathematical biosciences.

[55]  T. Ozaki 2 Non-linear time series models and dynamical systems , 1985 .

[56]  H. Ito Ergodicity of randomly perturbed Lorenz model , 1984 .

[57]  M. M. Tropper Ergodic and quasideterministic properties of finite-dimensional stochastic systems , 1977 .

[58]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[59]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[60]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[61]  ATTRACTORS AND BIFURCATIONS OF THE STOCHASTICLORENZ SYSTEMHANNES KELLERInstitute for Dynamical Systems , University of BremenP , .

[62]  Enate,et al.  Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter , 2003 .