Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
暂无分享,去创建一个
[1] A. Doucet,et al. Smoothing algorithms for state–space models , 2010 .
[2] Karl J. Friston,et al. DEM: A variational treatment of dynamic systems , 2008, NeuroImage.
[3] Olli Yli-Harja,et al. Stochastic Differential Equation Model for Cerebellar Granule Cell Excitability , 2008, PLoS Comput. Biol..
[4] Didier Sornette,et al. Properties of a simple bilinear stochastic model: Estimation and predictability , 2007, physics/0703217.
[5] Claire Lacour,et al. Nonparametric estimation of the stationary density and the transition density of a Markov chain , 2006, math/0611645.
[6] Escape from a potential well, stochastic resonance and zero frequency component of the noise , 2007 .
[7] A. Budhiraja,et al. A survey of numerical methods for nonlinear filtering problems , 2007 .
[8] L. M. Berliner,et al. A Bayesian tutorial for data assimilation , 2007 .
[9] Karl J. Friston,et al. Dynamic causal modelling of evoked responses: The role of intrinsic connections , 2007, NeuroImage.
[10] Dan Cornford,et al. Gaussian Process Approximations of Stochastic Differential Equations , 2007, Gaussian Processes in Practice.
[11] Karl J. Friston,et al. Variational free energy and the Laplace approximation , 2007, NeuroImage.
[12] Karl J. Friston,et al. Statistical parametric mapping , 2013 .
[13] Antonio Napolitano,et al. Cyclostationarity: Half a century of research , 2006, Signal Process..
[14] Tohru Ozaki,et al. An Approximate Innovation Method For The Estimation Of Diffusion Processes From Discrete Data , 2006 .
[15] J. NAGUMOt,et al. An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .
[16] A. Turbiner. Anharmonic Oscillator and Double-Well Potential: Approximating Eigenfunctions , 2005, math-ph/0506033.
[17] G. Rees. Statistical Parametric Mapping , 2004, Practical Neurology.
[18] Bo Wang,et al. Lack of Consistency of Mean Field and Variational Bayes Approximations for State Space Models , 2004, Neural Processing Letters.
[19] Leonard A. Smith,et al. Indistinguishable states II. The imperfect model scenario , 2004 .
[20] Bo Wang,et al. Convergence and Asymptotic Normality of Variational Bayesian Approximations for Expon , 2004, UAI.
[21] Eduardo Sontag,et al. Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[22] John Ian Ferrell,et al. Detection of multi-stability , 2004 .
[23] R. Meyer,et al. Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter , 2003 .
[24] Karl J. Friston,et al. Dynamic causal modelling , 2003, NeuroImage.
[25] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[26] J. Huang,et al. Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).
[27] Matthew J. Beal. Variational algorithms for approximate Bayesian inference , 2003 .
[28] Juha Karhunen,et al. An Unsupervised Ensemble Learning Method for Nonlinear Dynamic State-Space Models , 2002, Neural Computation.
[29] Eric A. Wan,et al. Dual Extended Kalman Filter Methods , 2002 .
[30] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[31] S. Haykin. Kalman Filtering and Neural Networks , 2001 .
[32] C. Herrmann. Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.
[33] M. Opper,et al. Information Geometry of Mean Field Approximation , 2001 .
[34] Terrence J. Sejnowski,et al. Variational Learning for Switching State-Space Models , 2001 .
[35] Zoubin Ghahramani,et al. The variational Kalman smoother , 2001 .
[36] Michael I. Jordan,et al. Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..
[37] G. Eyink. A Variational Formulation of Optimal Nonlinear Estimation , 2000, physics/0011049.
[38] Hugh F. Durrant-Whyte,et al. A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..
[39] J. Yedidia. An Idiosyncratic Journey Beyond Mean Field Theory , 2000 .
[40] W. Ames. Mathematics in Science and Engineering , 1999 .
[41] D. Crisan,et al. A particle approximation of the solution of the Kushner–Stratonovitch equation , 1999 .
[42] Toshiyuki Tanaka,et al. A Theory of Mean Field Approximation , 1998, NIPS.
[43] Chris Snyder,et al. The Fronts and Atlantic Storm-Track Experiment (FASTEX) : Scientific objectives and experimental design , 1997 .
[44] A. Rukhin. Bayes and Empirical Bayes Methods for Data Analysis , 1997 .
[45] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[46] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[47] R. Gill,et al. Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .
[48] Non‐stationarity in garch models: A bayesian analysis , 1993 .
[49] Geoffrey E. Hinton,et al. Keeping the neural networks simple by minimizing the description length of the weights , 1993, COLT '93.
[50] Christian P. Robert,et al. L'analyse statistique bayésienne , 1993 .
[51] É. Pardoux,et al. Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .
[52] Weiping Li,et al. Applied Nonlinear Control , 1991 .
[53] R. Gray. Entropy and Information Theory , 1990, Springer New York.
[54] F B Hanson,et al. Mean and quasideterministic equivalence for linear stochastic dynamics. , 1989, Mathematical biosciences.
[55] T. Ozaki. 2 Non-linear time series models and dynamical systems , 1985 .
[56] H. Ito. Ergodicity of randomly perturbed Lorenz model , 1984 .
[57] M. M. Tropper. Ergodic and quasideterministic properties of finite-dimensional stochastic systems , 1977 .
[58] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[59] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[60] R. FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.
[62] Enate,et al. Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter , 2003 .